Wie ändert der Opamp sein Verhalten abhängig von der Rückmeldung?
Das ideale Opamp-Verhalten selbst ist unverändert; Es ist die Rennstrecke Verhalten das anders ist.
Ist es nicht etwas in den Zeilen der hinzugefügten Spannung, das den Fehler erhöht, anstatt ihn im Fall von + Rückkopplung zu reduzieren?]
Das stimmt so weit es geht. Wenn wir stören (oder stören die Störung dämpfen wirken , während positive Rückkopplung) die Eingangsspannung, wird negatives Feedback handeln wird , die Störung zu verstärken.
Wie können wir Schaltkreise analysieren, in denen beide vorhanden sind?
Angenommen, es ist wie üblich netto negatives Feedback , was bedeutet , dass die nicht invertierenden und invertierenden Eingangsspannungen gleich sind. Überprüfen Sie dann das Ergebnis, um festzustellen, ob tatsächlich ein negatives Feedback vorliegt.
Ich werde das anhand Ihrer Beispielschaltung demonstrieren.
Schreiben Sie durch Inspektion
v+=vo+iR
v−=voR1R1+R1=vo2
Setze diese beiden Spannungen gleich und löse
vo+iR=vo2→vo=−2Ri
was impliziert
vo=2v+=2v
vi=−R
RS
In diesem Fall wird die Gleichung für die nichtinvertierende Eingangsspannung
v+=vSRRS+R+voRSRS+R
was impliziert
vo=2RR−RSvS
RS<R, the voltage gain is positive as expected from a non-inverting amplifier.
However, when RS>R, the voltage gain is negative for a non-inverting amplifier which is a red flag that something is wrong with our assumptions.
The wrong assumption is that there is negative feedback present and it was that assumption which licensed us to set the non-inverting and inverting input voltages equal in the analysis.
Note that the voltage gain goes to infinity as RS approaches R from below. Indeed, there is no net feedback when RS=R; the negative and positive feedbacks cancel. This is the 'boundary' between net negative feedback and net positive feedback.
Is this method of picking up on red flags always valid to determine
the limit between net positive and negative feedback?
What I did, in this case, was to make an assumption, solve the circuit under that assumption, and check the solution for consistency with the assumption. This is a generally valid technique.
The assumption was, in this case, that net negative feedback is present which implies that the op-amp input terminal voltages are equal.
When we solved the circuit in the 2nd case, we found that the net negative feedback assumption is valid only when RS<R. If RS≥R, there is no or positive feedback and, thus, no reason to constrain the input terminal voltages to be equal.
Now, it may not be clear why there is positive feedback when RS>R. Recall the setup for deriving the negative feedback equation:
Here, we subtract a scaled version of the output voltage from the input voltage and feed this difference Vin−βVout to the input of the amplifier.
Clearly, this assumes β is positive in order that there be a difference between the input and scaled output voltages.
The well known result is
Vout=AOL1+βAOLVin
and, in the limit of infinite gain A→∞
Vout=1βVin
Comparing this equation with the result for the 2nd case above, see that
β=R−RS2R
from which it immediately follows that we have net negative feedback only when RS<R.
There is some discussion in the comments about the conclusion for case 3, RS>R, in the accepted answer. Indeed, the analysis for case 3 is not correct.
As shown above, if we assume the op-amp input terminal voltages are equal, we find a solution where
vo=2RR−RSvS
Now assume, for example, that RS=2R then
vo=−2vS
And, in fact, one can verify that this is a solution where the op-amp input terminal voltages are equal
v+−v−=0
However, if we perturb the output slightly
vo=−2vS+ϵ
The voltage across the op-amp input is perturbed to
v+−v−=ϵ6
which is in the same 'direction' as the disturbance. Thus, this is not a stable solution since the system will 'run away' from the solution if disturbed.
Contrast this with the case that RS<R. For example, let RS=R2. Then
vo=4vS
Perturb the output
vo=4VS+ϵ
and find that the op-amp input voltage is perturbed to
v+−v−=−ϵ6
This is in the opposite direction as the disturbance. Thus, this is a stable solution since the system will 'run back' to the solution if disturbed.