Als «time-series» getaggte Fragen

Zeitreihen sind Daten, die über die Zeit beobachtet werden (entweder in kontinuierlicher Zeit oder in diskreten Zeiträumen).

5
Zeitreihenvorhersage mit ARIMA gegen LSTM
Das Problem, mit dem ich mich beschäftige, ist die Vorhersage von Zeitreihenwerten. Ich betrachte jeweils eine Zeitreihe und möchte anhand von beispielsweise 15% der Eingabedaten deren zukünftige Werte vorhersagen. Bisher bin ich auf zwei Modelle gestoßen: LSTM (Long Short Term Memory; eine Klasse wiederkehrender neuronaler Netze) ARIMA Ich habe beide …




1
Zeitreihenvorhersage mit LSTMs: Wichtigkeit, Zeitreihen stationär zu machen
In diesem Link zu Stationarität und Differenzierung wurde erwähnt, dass Modelle wie ARIMA eine stationäre Zeitreihe für die Vorhersage benötigen, da ihre statistischen Eigenschaften wie Mittelwert, Varianz, Autokorrelation usw. über die Zeit konstant sind. Da RNNs besser in der Lage sind, nichtlineare Beziehungen zu lernen ( wie hier angegeben: Das …




1
RNN mit mehreren Zeitreihen
Ich versuche, ein neuronales Netzwerk mit Zeitreihen als Eingabe zu erstellen, um es basierend auf dem Typ jeder Reihe zu trainieren. Ich habe gelesen, dass man mit RNNs die Eingabe in Gruppen aufteilen und jeden Punkt der Zeitreihe in einzelne Neuronen aufteilen und schließlich das Netzwerk trainieren kann. Ich versuche …
14 time-series  rnn 


1
Erkennen Sie eine Grammatik in einer Folge von unscharfen Token
Ich habe Textdokumente, die hauptsächlich Listen von Gegenständen enthalten. Jedes Objekt ist eine Gruppe von mehreren Token verschiedener Typen: Vorname, Nachname, Geburtsdatum, Telefonnummer, Stadt, Beruf usw. Ein Token ist eine Gruppe von Wörtern. Artikel können in mehreren Zeilen liegen. Elemente aus einem Dokument haben ungefähr dieselbe Tokensyntax, müssen jedoch nicht …


4
Vorhersageintervall um die LSTM-Zeitreihenprognose
Gibt es eine Methode zur Berechnung des Vorhersageintervalls (Wahrscheinlichkeitsverteilung) um eine Zeitreihenprognose aus einem LSTM-Netzwerk (oder einem anderen wiederkehrenden neuronalen Netzwerk)? Angenommen, ich prognostiziere 10 Stichproben für die Zukunft (t + 1 bis t + 10), basierend auf den letzten 10 beobachteten Stichproben (t-9 bis t), würde ich erwarten, dass …

2
Modellierung ungleichmäßig verteilter Zeitreihen
Ich habe eine kontinuierliche Variable, die über einen Zeitraum von einem Jahr in unregelmäßigen Abständen abgetastet wird. Einige Tage haben mehr als eine Beobachtung pro Stunde, während andere Perioden tagelang nichts haben. Dies macht es besonders schwierig, Muster in der Zeitreihe zu erkennen, da einige Monate (z. B. Oktober) stark …

1
Wie viele LSTM-Zellen soll ich verwenden?
Gibt es Faustregeln (oder tatsächliche Regeln) für die minimale, maximale und "angemessene" Anzahl von LSTM-Zellen, die ich verwenden sollte? Insbesondere beziehe ich mich auf BasicLSTMCell von TensorFlow und num_unitsEigenschaft. Bitte nehmen Sie an, dass ich ein Klassifizierungsproblem habe, das definiert ist durch: t - number of time steps n - …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.