Als «regression» getaggte Fragen

Techniken zum Analysieren der Beziehung zwischen einer (oder mehreren) "abhängigen" Variablen und "unabhängigen" Variablen.

2
Stochastischer Gradientenabstieg basierend auf Vektoroperationen?
Nehmen wir an, ich möchte einen stochastischen Regressionsalgorithmus für den Gradientenabstieg unter Verwendung eines Datensatzes mit N Stichproben trainieren. Da die Größe des Datensatzes festgelegt ist, werde ich die Daten T-mal wiederverwenden. Bei jeder Iteration oder "Epoche" verwende ich jedes Trainingsmuster genau einmal, nachdem ich den gesamten Trainingssatz zufällig neu …

3

2
Wann sollte man eine lineare Regression oder eine Entscheidungsbaum- oder eine zufällige Waldregression wählen? [geschlossen]
Geschlossen . Diese Frage muss fokussierter sein . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so, dass sie sich nur auf ein Problem konzentriert, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 4 Jahren . Ich arbeite an einem Projekt und habe Schwierigkeiten …
10 machine-learning  algorithms  random-forest  linear-regression  decision-trees  machine-learning  predictive-modeling  forecast  r  clustering  similarity  data-mining  dataset  statistics  text-mining  text-mining  data-cleaning  data-wrangling  machine-learning  classification  algorithms  xgboost  data-mining  dataset  dataset  regression  graphs  svm  unbalanced-classes  cross-validation  optimization  hyperparameter  genetic-algorithms  visualization  predictive-modeling  correlation  machine-learning  predictive-modeling  apache-spark  statistics  normalization  apache-spark  map-reduce  r  correlation  confusion-matrix  r  data-cleaning  classification  terminology  dataset  image-classification  machine-learning  regression  apache-spark  machine-learning  data-mining  nlp  parsing  machine-learning  dimensionality-reduction  visualization  clustering  multiclass-classification  evaluation  unsupervised-learning  machine-learning  machine-learning  data-mining  supervised-learning  unsupervised-learning  machine-learning  data-mining  classification  statistics  predictive-modeling  data-mining  clustering  python  pandas  machine-learning  dataset  data-cleaning  data  bigdata  software-recommendation 


3
Exportieren Sie Gewichte (Formel) aus Random Forest Regressor in Scikit-Learn
Ich habe ein Vorhersagemodell mit Scikit Learn in Python (Random Forest Regressor) trainiert und möchte die Gewichte der einzelnen Features irgendwie extrahieren, um ein Excel-Tool für die manuelle Vorhersage zu erstellen. Das einzige, was ich gefunden habe, ist das, model.feature_importances_aber es hilft nicht. Gibt es eine Möglichkeit, dies zu erreichen? …

2
Multivariate lineare Regression in Python
Ich suche nach einem Python-Paket, das eine multivariate lineare Regression implementiert. (Terminologische Anmerkung: Multivariate Regression befasst sich mit dem Fall, dass es mehr als eine abhängige Variable gibt, während multiple Regression den Fall behandelt, in dem es eine abhängige Variable, aber mehr als eine unabhängige Variable gibt.)

1
Kann das Vertrauen in Trainingsetiketten verwendet werden, um die Vorhersagegenauigkeit zu verbessern?
Ich habe Trainingsdaten, die mit Binärwerten gekennzeichnet sind. Ich habe auch das Vertrauen jedes dieser Etiketten gesammelt, dh 0,8 Vertrauen würde bedeuten, dass 80% der menschlichen Etikettierer diesem Etikett zustimmen. Ist es möglich, diese Vertrauensdaten zu verwenden, um die Genauigkeit meines Klassifikators zu verbessern? Würde folgendes funktionieren? 1a) Wenn das …

2
Vorhersage der Aufgabendauer
Ich versuche, ein Regressionsmodell zu erstellen, das die Dauer einer Aufgabe vorhersagt. Die Trainingsdaten, die ich habe, bestehen aus ungefähr 40.000 erledigten Aufgaben mit diesen Variablen: Wer hat die Aufgabe ausgeführt (~ 250 verschiedene Personen) Für welchen Teil (Teilprojekt) des Projekts wurde die Aufgabe ausgeführt (~ 20 verschiedene Teile)? Die …

2
Kann es bei Advanced Optimization-Algorithmen zu einer Überanpassung kommen?
Während eines Online-Kurses über maschinelles Lernen von Andrew Ng auf coursera stieß ich auf ein Thema namens Überanpassung . Ich weiß, dass es auftreten kann, wenn ein Gradientenabstieg in einer linearen oder logistischen Regression verwendet wird, aber kann es auftreten, wenn erweiterte Optimierungsalgorithmen wie "Gradient konjugieren", "BFGS" und "L-BFGS" verwendet …

2
Anpassen von Linien durch große Punktwolken
Ich habe eine große Menge von Punkten (in der Größenordnung von 10.000 Punkten), die durch Teilchenspuren (Bewegung in der xy-Ebene in der Zeit, die von einer Kamera aufgenommen wurde, also 3d - 256 x 256 Pixel und ca. 3.000 Bilder in meinem Beispielsatz) und Rauschen gebildet werden. Diese Partikel bewegen …





2
Theoretische Grenze - Regressionsfehler
Die Bayes-Fehlerrate ist eine theoretische Grenze, die anhand einiger Daten die niedrigstmögliche Fehlerrate für ein Klassifizierungsproblem bestimmt. Ich habe mich gefragt, ob es für den Fall von Regressionsalgorithmen ein äquivalentes Konzept gibt. Mein Ziel ist es zu bestimmen, wie weit der Fehler meines Regressionsalgorithmus von dieser theoretischen Grenze entfernt ist, …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.