Als «neural-network» getaggte Fragen

Künstliche neuronale Netze (ANN) bestehen aus "Neuronen" - Programmierkonstrukten, die die Eigenschaften biologischer Neuronen nachahmen. Eine Reihe gewichteter Verbindungen zwischen den Neuronen ermöglicht die Verbreitung von Informationen durch das Netzwerk, um Probleme mit künstlicher Intelligenz zu lösen, ohne dass der Netzwerkdesigner ein Modell eines realen Systems hatte.

10
Was sind Entfaltungsschichten?
Ich habe kürzlich Fully Convolutional Networks for Semantic Segmentation von Jonathan Long, Evan Shelhamer und Trevor Darrell gelesen. Ich verstehe nicht, was "Dekonvolutionsschichten" tun / wie sie funktionieren. Der relevante Teil ist 3.3. Upsampling ist eine rückwärts gerichtete Faltung Eine andere Möglichkeit, Grobausgänge mit dichten Pixeln zu verbinden, ist die …



6
Wann wird GRU über LSTM verwendet?
Der Hauptunterschied zwischen einer GRU und einem LSTM besteht darin, dass eine GRU zwei Gatter hat ( Reset- und Update- Gatter), während eine LSTM drei Gatter hat (nämlich Eingabe- , Ausgabe- und Vergessen- Gatter). Warum setzen wir GRU ein, wenn wir über das LSTM-Modell eine deutlich bessere Kontrolle über das …

8
Lernrate wählen
Ich arbeite derzeit an der Implementierung von Stochastic Gradient Descent SGDfür neuronale Netze unter Verwendung von Backpropagation, und obwohl ich den Zweck verstehe, habe ich einige Fragen zur Auswahl von Werten für die Lernrate. Bezieht sich die Lernrate auf die Form des Fehlergradienten, da sie die Abstiegsrate vorgibt? Wenn ja, …



3
Backprop durch Max-Pooling-Ebenen?
Dies ist eine kleine konzeptionelle Frage, die mich schon seit einiger Zeit beschäftigt: Wie können wir uns durch eine Max-Pooling-Schicht in einem neuronalen Netzwerk rückwärts ausbreiten? Ich bin auf Max-Pooling-Ebenen gestoßen, als ich dieses Tutorial für die nn-Bibliothek von Torch 7 durchgesehen habe . Die Bibliothek abstrahiert die Gradientenberechnung und …

4
Wie sind 1x1-Faltungen mit einer vollständig verbundenen Ebene identisch?
Ich habe kürzlich den Kommentar von Yan LeCuns zu 1x1-Windungen gelesen : In Convolutional Nets gibt es keine "vollständig verbundenen Schichten". Es gibt nur Faltungsschichten mit 1x1-Faltungskernen und einer vollständigen Verbindungstabelle. Es ist eine zu selten verstandene Tatsache, dass ConvNets keine Eingabe mit fester Größe benötigen. Sie können sie auf …

3
RNN vs CNN auf hohem Niveau
Ich habe über die Recurrent Neural Networks (RNN) und ihre Varietäten sowie Convolutional Neural Networks (CNN) und ihre Varietäten nachgedacht. Wären diese beiden Punkte fair zu sagen: Verwenden Sie CNNs, um eine Komponente (z. B. ein Bild) in Unterkomponenten (z. B. ein Objekt in einem Bild, z. B. den Umriss …

2
Wann wird die normale Initialisierung (He oder Glorot) über die gleichmäßige Initialisierung angewendet? Und welche Auswirkungen hat die Batch-Normalisierung?
Ich wusste, dass das Residual Network (ResNet) die normale Initialisierung populär machte. In ResNet wird die normale He-Initialisierung verwendet , während die erste Ebene die einheitliche He-Initialisierung verwendet. Ich habe das ResNet-Papier und das "Delving Deep into Rectifiers" -Papier (He-Initialisierungspapier) durchgesehen, aber ich habe keine Erwähnung für normales Init vs. …


4
Neuronale Netze: Welche Kostenfunktion soll verwendet werden?
Ich benutze TensorFlow für Experimente hauptsächlich mit neuronalen Netzen. Obwohl ich bereits einige Experimente durchgeführt habe (XOR-Problem, MNIST, einiges an Regression, ...), habe ich Schwierigkeiten, die "richtige" Kostenfunktion für bestimmte Probleme zu wählen, da ich insgesamt als Anfänger gelten könnte. Bevor ich zu TensorFlow kam, habe ich einige vollständig verbundene …

1
Was ist der Unterschied zwischen LeakyReLU und PReLU?
f( x ) = max ( x , α x ) mit α ∈ ( 0 , 1 )f(x)=max(x,αx) with α∈(0,1)f(x) = \max(x, \alpha x) \qquad \text{ with } \alpha \in (0, 1) Keras hat jedoch beide Funktionen in den Dokumenten . Undichte ReLU Quelle von LeakyReLU : return K.relu(inputs, …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.