Als «machine-learning» getaggte Fragen

Methoden und Prinzipien zum Aufbau von "Computersystemen, die sich mit der Erfahrung automatisch verbessern".


1
Fisher Scoring v / s Koordinatenabstieg für MLE in R.
Die R-Basisfunktion glm()verwendet Fishers Scoring für MLE, während die glmnetanscheinend die Koordinatenabstiegsmethode verwendet, um dieselbe Gleichung zu lösen. Der Koordinatenabstieg ist zeiteffizienter als das Fisher-Scoring, da das Fisher-Scoring zusätzlich zu einigen anderen Matrixoperationen die Ableitungsmatrix zweiter Ordnung berechnet. Dies ist teuer in der Durchführung, während der Koordinatenabstieg dieselbe Aufgabe in …



4
Algorithmus zum Generieren von Klassifizierungsregeln
Wir haben also das Potenzial für eine Anwendung für maschinelles Lernen, die ziemlich gut in die traditionelle Problemdomäne passt, die durch Klassifizierer gelöst wird, dh wir haben eine Reihe von Attributen, die ein Element und einen "Bucket" beschreiben, in dem sie landen. Anstatt jedoch Modelle zu erstellen Bei Wahrscheinlichkeiten wie …

2
Konsequenz der Feature-Skalierung
Ich verwende derzeit SVM und skaliere meine Trainingsfunktionen auf den Bereich von [0,1]. Ich passe zuerst mein Trainingsset an / transformiere es und wende dann dieselbe Transformation auf mein Testset an. Zum Beispiel: ### Configure transformation and apply to training set min_max_scaler = MinMaxScaler(feature_range=(0, 1)) X_train = min_max_scaler.fit_transform(X_train) ### Perform …

1
t-SNE Python-Implementierung: Kullback-Leibler-Divergenz
t-SNE reduziert wie in [1] schrittweise die Kullback-Leibler (KL) -Divergenz, bis eine bestimmte Bedingung erfüllt ist. Die Entwickler von t-SNE schlagen vor, die KL-Divergenz als Leistungskriterium für die Visualisierungen zu verwenden: Sie können die von t-SNE gemeldeten Kullback-Leibler-Divergenzen vergleichen. Es ist vollkommen in Ordnung, t-SNE zehnmal auszuführen und die Lösung …


4
Maschinelles Lernen vs Deep Learning
Ich bin etwas verwirrt über den Unterschied zwischen den Begriffen "Maschinelles Lernen" und "Deep Learning". Ich habe es gegoogelt und viele Artikel gelesen, aber es ist mir immer noch nicht sehr klar. Eine bekannte Definition von maschinellem Lernen von Tom Mitchell ist: Ein Computerprogramm soll aus der Erfahrung E in …

4
Über- / Unteranpassung mit Datensatzgröße
In der folgenden Grafik x-Achse => Datensatzgröße y-Achse => Kreuzvalidierungsergebnis Die rote Linie steht für Trainingsdaten Die grüne Linie dient zum Testen von Daten In einem Tutorial, auf das ich mich beziehe, sagt der Autor, dass der Punkt, an dem sich die rote und die grüne Linie überlappen, bedeutet: Es …


2
Die Unterschiede zwischen SVM und logistischer Regression
Ich lese darüber SVMund habe mich dem Punkt gestellt, dass nicht kernelisierte SVMsnichts anderes als lineare Trennzeichen sind. Ist daher der einzige Unterschied zwischen einer SVMund einer logistischen Regression das Kriterium für die Wahl der Grenze? Anscheinend SVMwählt der maximale Margenklassifikator und die logistische Regression ist diejenige, die den cross-entropyVerlust …




Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.