Als «deep-learning» getaggte Fragen

Ein neues Gebiet der maschinellen Lernforschung, das sich mit den Technologien befasst, die zum Lernen hierarchischer Darstellungen von Daten verwendet werden, hauptsächlich mit tiefen neuronalen Netzen (dh Netzen mit zwei oder mehr verborgenen Schichten), aber auch mit einer Art probabilistischer grafischer Modelle.


6
Warum funktionieren neuronale Faltungsnetze?
Ich habe oft Leute sagen hören, warum faltungsbedingte neuronale Netze immer noch schlecht verstanden werden. Ist bekannt, warum faltungsbedingte neuronale Netze immer komplexer werdende Funktionen erlernen, wenn wir die Schichten hinaufsteigen? Was hat sie dazu veranlasst, einen solchen Stapel von Features zu erstellen, und würde dies auch für andere Arten …




1
Zeitreihenvorhersage mit LSTMs: Wichtigkeit, Zeitreihen stationär zu machen
In diesem Link zu Stationarität und Differenzierung wurde erwähnt, dass Modelle wie ARIMA eine stationäre Zeitreihe für die Vorhersage benötigen, da ihre statistischen Eigenschaften wie Mittelwert, Varianz, Autokorrelation usw. über die Zeit konstant sind. Da RNNs besser in der Lage sind, nichtlineare Beziehungen zu lernen ( wie hier angegeben: Das …



3
Extraktion von Schlüsselwörtern / Ausdrücken aus Text mithilfe von Deep Learning-Bibliotheken
Vielleicht ist das zu weit gefasst, aber ich suche nach Hinweisen, wie man Deep Learning in einer Aufgabe zur Zusammenfassung von Texten einsetzt. Ich habe bereits eine Textzusammenfassung mit Standard-Worthäufigkeitsansätzen und Satz-Ranking implementiert, möchte jedoch die Möglichkeit untersuchen, für diese Aufgabe Deep-Learning-Techniken zu verwenden. Ich habe auch einige Implementierungen auf …

2
Keras gegen tf.keras
Ich bin etwas verwirrt, wenn ich für mein neues Forschungsprojekt zwischen Keras (keras-team / keras) und tf.keras (tensorflow / tensorflow / python / keras /) wähle. Es gibt eine Debatte, in der Keras niemandem gehört, daher können die Leute gerne dazu beitragen, und es wird in Zukunft viel einfacher sein, …




4
Wie erhält man Genauigkeit, F1, Präzision und Rückruf für ein Keras-Modell?
Ich möchte die Genauigkeit, den Rückruf und den F1-Score für mein binäres KerasClassifier-Modell berechnen, finde aber keine Lösung. Hier ist mein aktueller Code: # Split dataset in train and test data X_train, X_test, Y_train, Y_test = train_test_split(normalized_X, Y, test_size=0.3, random_state=seed) # Build the model model = Sequential() model.add(Dense(23, input_dim=45, kernel_initializer='normal', …

1
Warum ReLU besser ist als die anderen Aktivierungsfunktionen
Hier bezieht sich die Antwort auf das Verschwinden und Explodieren von Verläufen, die sigmoidähnliche Aktivierungsfunktionen hatten, aber Relueinen Nachteil haben und deren erwarteter Wert sind. Es gibt keine Begrenzung für die Ausgabe von Reluund daher ist der erwartete Wert nicht Null. Ich erinnere mich an die Zeit vor der Popularität …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.