Nehmen wir an , dass . N P I ist die Klasse von Problemen in N P, die weder in P noch in N P -hard sind. Eine Liste der Probleme, von denen vermutet wird, dass sie N P I sind, finden Sie hier .
Das Ladner-Theorem besagt, dass es, wenn ist, eine unendliche Hierarchie von N P I -Problemen gibt, dh, es gibt N P I -Probleme, die schwerer sind als andere N P I -Probleme.
Ich bin auf der Suche nach Kandidaten für solche Probleme, dh ich interessiere mich für Problempaare
- , - A und B werden als N P vermutet. I , - A reduziert sich bekanntermaßen auf B , - gibt es aber Keine Reduktionen von B nach A bekannt .
Noch besser, wenn es Argumente dafür gibt, z. B. gibt es Ergebnisse, die der Annahme einiger Vermutungen in der Komplexitätstheorie oder Kryptographie nicht auf A reduziert .
Gibt es natürliche Beispiele für solche Probleme?
Beispiel: Es wird vermutet, dass das Graph-Isomorphismus-Problem und das Integer-Faktorisierungs-Problem in und es gibt Argumente, die diese Vermutungen stützen. Gibt es Entscheidungsprobleme, die schwerer sind als diese beiden, von denen jedoch nicht bekannt ist, dass sie N P -hart sind?