Um ein Papier besser zu verstehen, versuche ich, ein kurzes Verständnis der Logik der am wenigsten festen Punkte zu erlangen. Es gibt einige Punkte, an denen ich festsitze.
Wenn ist ein Graph und
ist ein Bediener auf der binären Relation . Ich verstehe nicht, warum der kleinste Fixpunkt P ∗ von P der transitive Abschluss von E ist . Das Beispiel stammt aus der endlichen Modelltheorie und ihren Anwendungen (S. 60).
Wenn die Logik erste Ordnung erstreckt , um mit dem am wenigsten festen Zeiger Operator verstehe ich nicht , warum die Beziehung Symbol sein muss positiv in der Formel. Positiv bedeutet, dass jedes Auftreten von S i in der Formel innerhalb einer geraden Anzahl von Negationssymbolen liegt.
Hat jemand eine Idee, was gut zu lesen ist, um die am wenigsten feste Zeigerlogik und ihre Syntax und Semantik intuitiv zu verstehen?