24/13 26/14 28/15 30/16 32/17 (C #)
Bearbeiten:
Veraltete Informationen aus meiner Antwort gelöscht. Ich verwende größtenteils den gleichen Algorithmus wie Peter Taylor ( Bearbeiten: Es sieht so aus, als würde er jetzt einen besseren Algorithmus verwenden), obwohl ich einige meiner eigenen Optimierungen hinzugefügt habe:
- Ich habe die Strategie "Treffen in der Mitte" implementiert, nach Spaltensätzen mit der gleichen Vektorsumme zu suchen (vorgeschlagen durch diesen KennyTM-Kommentar ). Diese Strategie hat die Speichernutzung stark verbessert, ist jedoch ziemlich langsam. Daher habe ich die
HasPropertyXFast
Funktion hinzugefügt , mit der schnell überprüft wird, ob kleine Mengen mit gleichen Summen vorhanden sind, bevor der Ansatz "Treffen in der Mitte" verwendet wird.
- Beim Durchlaufen von Spaltensätzen in der
HasPropertyXFast
Funktion beginne ich mit dem Überprüfen von Spaltensätzen mit 1 Spalte, dann mit 2, 3 usw. Die Funktion kehrt zurück, sobald die erste Kollision von Spaltensummen gefunden wurde. In der Praxis bedeutet dies, dass ich normalerweise nur ein paar Hundert oder Tausende von Spaltensätzen anstelle von Millionen überprüfen muss.
- Ich verwende
long
Variablen, um ganze Spalten und ihre Vektorsummen zu speichern und zu vergleichen. Dieser Ansatz ist mindestens eine Größenordnung schneller als der Vergleich von Spalten als Arrays.
- Ich habe meine eigene Implementierung von Hashset hinzugefügt, die für den
long
Datentyp und für meine Verwendungsmuster optimiert ist .
- Ich verwende dieselben 3 Hashsets für die gesamte Lebensdauer der Anwendung, um die Anzahl der Speicherzuweisungen zu verringern und die Leistung zu verbessern.
- Multithreading-Unterstützung.
Programmausgabe:
00000000000111011101010010011111
10000000000011101110101001001111
11000000000001110111010100100111
11100000000000111011101010010011
11110000000000011101110101001001
11111000000000001110111010100100
01111100000000000111011101010010
00111110000000000011101110101001
10011111000000000001110111010100
01001111100000000000111011101010
00100111110000000000011101110101
10010011111000000000001110111010
01001001111100000000000111011101
10100100111110000000000011101110
01010010011111000000000001110111
10101001001111100000000000111011
11010100100111110000000000011101
Score: 32/17 = 1,88235294117647
Time elapsed: 02:11:05.9791250
Code:
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
class Program
{
const int MaxWidth = 32;
const int MaxHeight = 17;
static object _lyndonWordLock = new object();
static void Main(string[] args)
{
Stopwatch sw = Stopwatch.StartNew();
double maxScore = 0;
const int minHeight = 17; // 1
for (int height = minHeight; height <= MaxHeight; height++)
{
Console.WriteLine("Row count = " + height);
Console.WriteLine("Time elapsed: " + sw.Elapsed + "\r\n");
int minWidth = Math.Max(height, (int)(height * maxScore) + 1);
for (int width = minWidth; width <= MaxWidth; width++)
{
#if MULTITHREADING
int[,] matrix = FindMatrixParallel(width, height);
#else
int[,] matrix = FindMatrix(width, height);
#endif
if (matrix != null)
{
PrintMatrix(matrix);
Console.WriteLine("Time elapsed: " + sw.Elapsed + "\r\n");
maxScore = (double)width / height;
}
else
break;
}
}
}
#if MULTITHREADING
static int[,] FindMatrixParallel(int width, int height)
{
_lyndonWord = 0;
_stopSearch = false;
int threadCount = Environment.ProcessorCount;
Task<int[,]>[] tasks = new Task<int[,]>[threadCount];
for (int i = 0; i < threadCount; i++)
tasks[i] = Task<int[,]>.Run(() => FindMatrix(width, height));
int index = Task.WaitAny(tasks);
if (tasks[index].Result != null)
_stopSearch = true;
Task.WaitAll(tasks);
foreach (Task<int[,]> task in tasks)
if (task.Result != null)
return task.Result;
return null;
}
static volatile bool _stopSearch;
#endif
static int[,] FindMatrix(int width, int height)
{
#if MULTITHREADING
_columnSums = new LongSet();
_left = new LongSet();
_right = new LongSet();
#endif
foreach (long rowTemplate in GetLyndonWords(width))
{
int[,] matrix = new int[width, height];
for (int x = 0; x < width; x++)
{
int cellValue = (int)(rowTemplate >> (width - 1 - x)) % 2;
for (int y = 0; y < height; y++)
matrix[(x + y) % width, y] = cellValue;
}
if (!HasPropertyX(matrix))
return matrix;
#if MULTITHREADING
if (_stopSearch)
return null;
#endif
}
return null;
}
#if MULTITHREADING
static long _lyndonWord;
#endif
static IEnumerable<long> GetLyndonWords(int length)
{
long lyndonWord = 0;
long max = (1L << (length - 1)) - 1;
while (lyndonWord <= max)
{
if ((lyndonWord % 2 != 0) && PrecedesReversal(lyndonWord, length))
yield return lyndonWord;
#if MULTITHREADING
lock (_lyndonWordLock)
{
if (_lyndonWord <= max)
_lyndonWord = NextLyndonWord(_lyndonWord, length);
else
yield break;
lyndonWord = _lyndonWord;
}
#else
lyndonWord = NextLyndonWord(lyndonWord, length);
#endif
}
}
static readonly int[] _lookup =
{
32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, 4, 7, 17,
0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, 5, 20, 8, 19, 18
};
static int NumberOfTrailingZeros(uint i)
{
return _lookup[(i & -i) % 37];
}
static long NextLyndonWord(long w, int length)
{
if (w == 0)
return 1;
int currentLength = length - NumberOfTrailingZeros((uint)w);
while (currentLength < length)
{
w += w >> currentLength;
currentLength *= 2;
}
w++;
return w;
}
private static bool PrecedesReversal(long lyndonWord, int length)
{
int shift = length - 1;
long reverse = 0;
for (int i = 0; i < length; i++)
{
long bit = (lyndonWord >> i) % 2;
reverse |= bit << (shift - i);
}
for (int i = 0; i < length; i++)
{
if (reverse < lyndonWord)
return false;
long bit = reverse % 2;
reverse /= 2;
reverse += bit << shift;
}
return true;
}
#if MULTITHREADING
[ThreadStatic]
#endif
static LongSet _left = new LongSet();
#if MULTITHREADING
[ThreadStatic]
#endif
static LongSet _right = new LongSet();
static bool HasPropertyX(int[,] matrix)
{
long[] matrixColumns = GetMatrixColumns(matrix);
if (matrixColumns.Length == 1)
return false;
return HasPropertyXFast(matrixColumns) || MeetInTheMiddle(matrixColumns);
}
static bool MeetInTheMiddle(long[] matrixColumns)
{
long[] leftColumns = matrixColumns.Take(matrixColumns.Length / 2).ToArray();
long[] rightColumns = matrixColumns.Skip(matrixColumns.Length / 2).ToArray();
if (PrepareHashSet(leftColumns, _left) || PrepareHashSet(rightColumns, _right))
return true;
foreach (long columnSum in _left.GetValues())
if (_right.Contains(columnSum))
return true;
return false;
}
static bool PrepareHashSet(long[] columns, LongSet sums)
{
int setSize = (int)System.Numerics.BigInteger.Pow(3, columns.Length);
sums.Reset(setSize, setSize);
foreach (long column in columns)
{
foreach (long sum in sums.GetValues())
if (!sums.Add(sum + column) || !sums.Add(sum - column))
return true;
if (!sums.Add(column) || !sums.Add(-column))
return true;
}
return false;
}
#if MULTITHREADING
[ThreadStatic]
#endif
static LongSet _columnSums = new LongSet();
static bool HasPropertyXFast(long[] matrixColumns)
{
int width = matrixColumns.Length;
int maxColumnCount = width / 3;
_columnSums.Reset(width, SumOfBinomialCoefficients(width, maxColumnCount));
int resetBit, setBit;
for (int k = 1; k <= maxColumnCount; k++)
{
uint columnMask = (1u << k) - 1;
long sum = 0;
for (int i = 0; i < k; i++)
sum += matrixColumns[i];
while (true)
{
if (!_columnSums.Add(sum))
return true;
if (!NextColumnMask(columnMask, k, width, out resetBit, out setBit))
break;
columnMask ^= (1u << resetBit) ^ (1u << setBit);
sum = sum - matrixColumns[resetBit] + matrixColumns[setBit];
}
}
return false;
}
// stolen from Peter Taylor
static bool NextColumnMask(uint mask, int k, int n, out int resetBit, out int setBit)
{
int gap = NumberOfTrailingZeros(~mask);
int next = 1 + NumberOfTrailingZeros(mask & (mask + 1));
if (((k - gap) & 1) == 0)
{
if (gap == 0)
{
resetBit = next - 1;
setBit = next - 2;
}
else if (gap == 1)
{
resetBit = 0;
setBit = 1;
}
else
{
resetBit = gap - 2;
setBit = gap;
}
}
else
{
if (next == n)
{
resetBit = 0;
setBit = 0;
return false;
}
if ((mask & (1 << next)) == 0)
{
if (gap == 0)
{
resetBit = next - 1;
setBit = next;
}
else
{
resetBit = gap - 1;
setBit = next;
}
}
else
{
resetBit = next;
setBit = gap;
}
}
return true;
}
static long[] GetMatrixColumns(int[,] matrix)
{
int width = matrix.GetLength(0);
int height = matrix.GetLength(1);
long[] result = new long[width];
for (int x = 0; x < width; x++)
{
long column = 0;
for (int y = 0; y < height; y++)
{
column *= 13;
if (matrix[x, y] == 1)
column++;
}
result[x] = column;
}
return result;
}
static int SumOfBinomialCoefficients(int n, int k)
{
int result = 0;
for (int i = 0; i <= k; i++)
result += BinomialCoefficient(n, i);
return result;
}
static int BinomialCoefficient(int n, int k)
{
long result = 1;
for (int i = n - k + 1; i <= n; i++)
result *= i;
for (int i = 2; i <= k; i++)
result /= i;
return (int)result;
}
static void PrintMatrix(int[,] matrix)
{
int width = matrix.GetLength(0);
int height = matrix.GetLength(1);
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
Console.Write(matrix[x, y]);
Console.WriteLine();
}
Console.WriteLine("Score: {0}/{1} = {2}", width, height, (double)width / height);
}
}
class LongSet
{
private static readonly int[] primes =
{
17, 37, 67, 89, 113, 149, 191, 239, 307, 389, 487, 613, 769, 967, 1213, 1523, 1907,
2389, 2999, 3761, 4703, 5879, 7349, 9187, 11489, 14369, 17971, 22469, 28087, 35111,
43889, 54869, 68597, 85751, 107197, 133999, 167521, 209431, 261791, 327247, 409063,
511333, 639167, 798961, 998717, 1248407, 1560511, 1950643, 2438309, 3047909,
809891, 4762367, 5952959, 7441219, 9301529, 11626913, 14533661, 18167089, 22708867,
28386089, 35482627, 44353297, 55441637, 69302071, 86627603, 108284507, 135355669,
169194593, 211493263, 264366593, 330458263, 413072843, 516341057, 645426329,
806782913, 1008478649, 1260598321
};
private int[] _buckets;
private int[] _nextItemIndexes;
private long[] _items;
private int _count;
private int _minCapacity;
private int _maxCapacity;
private int _currentCapacity;
public LongSet()
{
Initialize(0, 0);
}
private int GetPrime(int capacity)
{
foreach (int prime in primes)
if (prime >= capacity)
return prime;
return int.MaxValue;
}
public void Reset(int minCapacity, int maxCapacity)
{
if (maxCapacity > _maxCapacity)
Initialize(minCapacity, maxCapacity);
else
ClearBuckets();
}
private void Initialize(int minCapacity, int maxCapacity)
{
_minCapacity = GetPrime(minCapacity);
_maxCapacity = GetPrime(maxCapacity);
_currentCapacity = _minCapacity;
_buckets = new int[_maxCapacity];
_nextItemIndexes = new int[_maxCapacity];
_items = new long[_maxCapacity];
_count = 0;
}
private void ClearBuckets()
{
Array.Clear(_buckets, 0, _currentCapacity);
_count = 0;
_currentCapacity = _minCapacity;
}
public bool Add(long value)
{
int bucket = (int)((ulong)value % (ulong)_currentCapacity);
for (int i = _buckets[bucket] - 1; i >= 0; i = _nextItemIndexes[i])
if (_items[i] == value)
return false;
if (_count == _currentCapacity)
{
Grow();
bucket = (int)((ulong)value % (ulong)_currentCapacity);
}
int index = _count;
_items[index] = value;
_nextItemIndexes[index] = _buckets[bucket] - 1;
_buckets[bucket] = index + 1;
_count++;
return true;
}
private void Grow()
{
Array.Clear(_buckets, 0, _currentCapacity);
const int growthFactor = 8;
int newCapacity = GetPrime(_currentCapacity * growthFactor);
if (newCapacity > _maxCapacity)
newCapacity = _maxCapacity;
_currentCapacity = newCapacity;
for (int i = 0; i < _count; i++)
{
int bucket = (int)((ulong)_items[i] % (ulong)newCapacity);
_nextItemIndexes[i] = _buckets[bucket] - 1;
_buckets[bucket] = i + 1;
}
}
public bool Contains(long value)
{
int bucket = (int)((ulong)value % (ulong)_buckets.Length);
for (int i = _buckets[bucket] - 1; i >= 0; i = _nextItemIndexes[i])
if (_items[i] == value)
return true;
return false;
}
public IReadOnlyList<long> GetValues()
{
return new ArraySegment<long>(_items, 0, _count);
}
}
Konfigurationsdatei:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<runtime>
<gcAllowVeryLargeObjects enabled="true" />
</runtime>
</configuration>