Intro
Es gibt 3 Nägel in der Wand. Sie haben ein Stück Schnur, das mit beiden Enden am Bilderrahmen befestigt ist. Um das Bild aufzuhängen, haben Sie die Schnur mit den Nägeln verwickelt. Aber bevor Sie das Bild loslassen: Können Sie vorhersagen, ob das Bild fallen wird, indem Sie sich nur ansehen, wie die Schnur um die Nägel gewickelt ist?
Im ersten Beispiel wird das Bild nicht fallen. Im zweiten Beispiel wird das Bild fallen.
Herausforderung
N
Bestimmen Sie anhand des Pfades der Schnur um die Nägel, ob das Bild fallen wird oder nicht. Geben Sie einen wahrheitsgemäßen Wert zurück, wenn das Bild sinken soll, und einen falschen Wert, wenn nicht.
Einzelheiten
- Sie können davon ausgehen, dass die Nägel und das Bild in einem regelmäßigen
N+1
Rechteck angeordnet sind , wobei sich das Bild unten befindet. - Sie können davon ausgehen, dass sich keine Knoten im Seil befinden, dh das Seil kann kontinuierlich von einem der beiden Enden abgewickelt werden.
- Jeder Nagel wird im Uhrzeigersinn mit einem Buchstaben des Alphabets aufgezählt. Sie können davon ausgehen, dass es maximal 26 Nägel (AZ) gibt.
- Ein Umwickeln eines Nagels im Uhrzeigersinn wird mit dem Kleinbuchstaben bezeichnet, ein Umwickeln im Gegenuhrzeigersinn mit dem Großbuchstaben.
Das erste Beispiel von oben wird codiert als BcA
, das zweite Beispiel wird codiert als CAbBac
.
Für den geneigten Leser: Dieses Problem ist gleichbedeutend mit der Feststellung, ob ein Element der freien Gruppe - das durch den Satz von Nägeln erzeugt wird - die Identität ist oder nicht. Dies bedeutet , es ist ausreichend , um wiederholt abbrechen Strings wie aA
oder , Aa
bis Sie einen festen Punkt erreicht. Wenn der Fixpunkt eine leere Zeichenfolge ist, ist dies das neutrale Element, andernfalls nicht.
Beispiele
Picture will fall:
Aa
CAbBac
aBbA
DAacAaCdCaAcBCBbcaAb
ARrQqRrUuVHhvTtYyDdYyEKRrkeUWwua
AKkQqEeVvBESWwseYQqyXBbxVvPpWwTtKkVHLlWwNBbAanYYyyhWwEJZUuNnzjYyBLQqQqlEGgebeEPLlTtZzpUuevZzSsbXSGgsUuLlHhUQquPpHUuFfhTZzIitGgFAaBRrBbbYXxOoDZTDdtzVvXxUudHhOVvoUuXKkxyBEeLlbFfKkHhfVAaQqHAaJjODdoVvhSsZzMZzmPpXNBbnxBbUuSSsUuDRrdNnUusJDIiUuIidCEGgeMmcLlDPOopdTEeQqCAETtNnYyeGUuPEFfSsWwHheAaBbpgCcOHUuhAaCcoEFBbfeaFHhfcCFFffNncGFfgtjMVUuKAakvKkXxLlTMmtmOFfoUuXSsYZzLXxlyxUuRPZzTtprSsWwRrPLlpGgMmKRrDHhdRCcUurYNnKCckykXJjxWwUSsJjKkLlKkuBbBbOoWwWwIiUuPDdBbCcWHBbCFfcDdYBbLlyVvSsWGgEewCchDdYywAaJjEepPpPpQXxZzFfLGXxglNnZzYDdyqCcKWXxwXxQqXTtxkFfBSSAasTFftZzsXGgxSsLlLlbZzAaCCccXVvYyxTIiOoBbFftCVQqDdBbGgAavQqKkDPpKTCctRrkdcvAaQWOowLOolqVMmvZAaHCBbcPphIiRKkrLlzFMOomDIiXJjIixMmdNnMHhmfNTtIiKkSDdTtsVvHhnAaNSVvTUutNnXxsGIiXxPpPHhUupgNnAaAAOoaaIiHJjhVvLlnYyXxQqSsTtKJjkBbNnVvEYCcFfMHGghBbmNnEeJTtjJjWYywyeNWwDIiZYyzOodnMQqmVvCcQqxVvGNnEeNBbngVvUGgYyBbDdVvIiAAaauPpQKDdEekNnVLlvHhGSDIidPZzpsPCcpgQqKkQqNOonLlIiLlJjqPAaPXxTtppYyCPpHhCIicARBbracXxWwXEVUuUuGgZHhzBSsbvGgFfeVvxLlNKknWwBLlIibWOowNnRSsrSEeKAakOosLZzZRrHhzTtTFfUuNnOKkotXxTtla
Picture will not fall:
A
BcA
ABCD
aBaA
bAaBcbBCBcAaCdCaAcaCAD
ARrQqRrUatuVHhvTYyDdYyEKRrkeUAua
AEEeQqNneHhLlAIiGgaECXxcJjZzeJFfVWwDdKkvYWwyTJjtCXxANIinaXWwxcTWwtUuWwMmTBbVWIiFLlWwZzfwPLlEepvWZzwKkEYEeWXxwySXTtEexRIiNBbnWAaTtQqNnBMSsWwOombwWwPVPpGPpgYyvDdpBbrQqHhUusKRrDAVvadLlWwOZzokGJCXSSssXxxJPpGIigZzjJjLlOoNRrnPpcMZzmjgJjNDEeQqWKkNTtnSswIidCcnYBGgbyJSsjPpIiMmMmMmSNnWVvwZzIQqLXHhxTPptlisOoeTtTtYMmVvPpyKNnMFfmkXxSVvsCGJjXxgXYJPpjWwQIiXxqyDdxFfDdAaRNnJjrctHBbZzhEQqMmeCcRBbrGgAaAaJNnRrYyWwSDdVvsJOojQGgWWwIBbiwRrqJjjWwOoFPMmDdRrQOoqNnRrDPJjpMmdPpGFfVvWUuwgpWCcNnPpwfUXCcZzJjUSsuXxxUuuRGgHhrSQqJjOosMMTtmHhmKkXxDdLlWwjSUuAaMmKYyksZzVvPZzVEeVvvHhZZOozBbzMmZCczYyGgISsiQqpXxMmXxEMmeRrAGgaGgMOGgomZFfDdzSSssBGPpgbTtBbOoRWWwGgLJjlEeGgLDdRrUulNnZzJjJjUKkuXxFfwATtaZzLVvlWwSsMmrBAaELleGBLFflbgHhbIFfiBbPpTWZzwKkKLASsaTJYyjtBbBbWwIiZCcWwzIiZLlUTtuBbYyBbIizTJjtLTtDOOoBbodBbllSsUGgLlAKkauYykUuUNnPpuDFfAaLNVvnVvlHhdMmBAaBbIiVRrGWOoPpwgWXwKkvJjOoTtYCUucVGgYyLlVvFfvRrMmySsDdbtICZzcNnINSOosDQAaXoxRGgKkrqdZznDdXxZzMGgmiJjNnACcMQqmaNnWZzUOuwTVvAJjSsaRrGgSsTtOMmRroVvRrtAVGgvMmaINniDGCcOogRrWwMVvYFfyTtmTtVvOoOIiodRrGgAxaSsGgiJja