Unter Linux funktioniert das gut:
$ lscpu -e
CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE
0 0 0 0 0:0:0:0 yes
1 0 0 1 1:1:1:0 yes
2 0 0 2 2:2:2:0 yes
3 0 0 3 3:3:3:0 yes
4 0 0 4 4:4:4:0 yes
5 0 0 5 5:5:5:0 yes
6 0 0 6 6:6:6:0 yes
7 0 0 7 7:7:7:0 yes
8 1 1 8 8:8:8:1 yes
9 1 1 9 9:9:9:1 yes
10 1 1 10 10:10:10:1 yes
11 1 1 11 11:11:11:1 yes
12 1 1 12 12:12:12:1 yes
13 1 1 13 13:13:13:1 yes
14 1 1 14 14:14:14:1 yes
15 1 1 15 15:15:15:1 yes
16 0 0 0 0:0:0:0 yes
17 0 0 1 1:1:1:0 yes
18 0 0 2 2:2:2:0 yes
19 0 0 3 3:3:3:0 yes
20 0 0 4 4:4:4:0 yes
21 0 0 5 5:5:5:0 yes
22 0 0 6 6:6:6:0 yes
23 0 0 7 7:7:7:0 yes
24 1 1 8 8:8:8:1 yes
25 1 1 9 9:9:9:1 yes
26 1 1 10 10:10:10:1 yes
27 1 1 11 11:11:11:1 yes
28 1 1 12 12:12:12:1 yes
29 1 1 13 13:13:13:1 yes
30 1 1 14 14:14:14:1 yes
31 1 1 15 15:15:15:1 yes
Im obigen Beispiel haben wir 2 NUMA-Buchsen (SOCKET = 1 oder 2). Wir haben 16 physikalische Kerne (CORE = 0 bis 15). Jeder CORE hat einen geschwisterlichen Hyperthread (CORE = 0 enthält z. B. CPU 0,16.
Wir können den Hyperthread folgendermaßen überprüfen:
$ cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list
0,16
Die Cache-Speicherhierarchie lautet:
CPU 0 --> L1D_0|L1I_0 -> L2_0 -> L3_0
^ ^
CPU 16 ---| |
|
CPU 1 --> L1D_1|L1I_1 -> L2_1 --->
^
CPU 17 ---|
...
lscpu -p gibt eine Ausgabe im CSV-Format zum einfachen Parsen von Programmen aus.
$ lscpu -p
# The following is the parsable format, which can be fed to other
# programs. Each different item in every column has an unique ID
# starting from zero.
# CPU,Core,Socket,Node,,L1d,L1i,L2,L3
0,0,0,0,,0,0,0,0
1,1,0,0,,1,1,1,0
2,2,0,0,,2,2,2,0
3,3,0,0,,3,3,3,0
4,4,0,0,,4,4,4,0
...
dmidecode
du musst root sein.