Ein Long Short Term Memory (LSTM) ist eine neuronale Netzwerkarchitektur, die wiederkehrende NN-Blöcke enthält, die sich über einen beliebigen Zeitraum an einen Wert erinnern können.
Angenommen, ich füge eine 2D-Formmatrix (99, 13) als Eingabe in eine LSTM-Ebene ein. Ich habe n Dateien, wobei jede (99,13) Größenvektoren enthält. Ich habe beschlossen, 13 als Anzahl der Features und 99 als Zeitschritte zu betrachten. (Während der Implementierung mit Keras habe ich die LSTM-Ebene als erste Ebene hinzugefügt. Und …
Ich möchte besser verstehen, warum sich LSTM über einen längeren Zeitraum an Informationen erinnern kann als Vanille / einfaches wiederkehrendes neuronales Netzwerk (SRNN), indem ich ein Experiment aus dem Artikel Lernen von Langzeitabhängigkeiten mit Gradientenabstieg von Bengio et al. 1994 . Siehe Abb. 1. und 2 auf diesem Papier. Die …
Alex Graves hat ein Modell erstellt, um Handschriftsequenzen zu generieren, die ein LSTM (Art Recurrent Neural Network) verwenden, um die Parameter für ein Mischungsmodell vorherzusagen. Das Mischungsmodell wird dann verwendet, um die nächste x-, y-Koordinate vorherzusagen und ob der Stift nach oben oder unten zeigt. Generieren von Sequenzen mit wiederkehrenden …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.