Wenn der erwartete Wert von G a m m a ( α , β )
Die Parametrisierung, die ich verwende, ist die Formrate.
Wenn der erwartete Wert von G a m m a ( α , β )
Die Parametrisierung, die ich verwende, ist die Formrate.
Antworten:
Dies kann (vielleicht überraschend) mit einfachen Elementaroperationen durchgeführt werden (unter Verwendung von Richard Feynmans Lieblingstrick der Differenzierung unter dem Integralzeichen in Bezug auf einen Parameter).
We are supposing X
After this simplification, the probability element of X
fX(x)=1Γ(α)xαe−xdxx
where Γ(α)
Γ(α)=∫∞0xαe−xdxx.
Substituting x=ey,
fY(y)=1Γ(α)eαy−eydy.
The possible values of Y
Because fY
Γ(α)=∫Reαy−eydy.
Notice fY(y)
ddαeαy−eydy=yeαy−eydy=Γ(α)yfY(y).
The next step exploits the relation obtained by dividing both sides of this identity by Γ(α),
E(Y)=∫RyfY(y)=1Γ(α)∫Rddαeαy−eydy=1Γ(α)ddα∫Reαy−eydy=1Γ(α)ddαΓ(α)=ddαlogΓ(α)=ψ(α),
the logarithmic derivative of the gamma function (aka "polygamma"). The integral was computed using identity (1).
Re-introducing the factor β
E(log(X))=logβ+ψ(α)
for a scale parameterization (where the density function depends on x/β
E(log(X))=−logβ+ψ(α)
for a rate parameterization (where the density function depends on xβ
The answer by @whuber is quite nice; I will essentially restate his answer in a more general form which connects (in my opinion) better with statistical theory, and which makes clear the power of the overall technique.
Consider a family of distributions {Fθ:θ∈Θ}
∫fθ(x) dx=1
We now show this helps us compute the require expectation. We can write the gamma density with fixed β