Eine Verallgemeinerung der Frage fragt nach der Verteilung von wenn die Verteilung von X bekannt ist und auf den natürlichen Zahlen beruht. (In der Frage hat X eine Poisson-Verteilung von Parameter λ = λ 1 + λ 2 + ⋯ + λ n und m = n .)Y=⌊X/m⌋XXλ=λ1+λ2+⋯+λnm=n
Die Verteilung von wird leicht durch die Verteilung von m Y bestimmt , deren wahrscheinlichkeitserzeugende Funktion (pgf) als pgf von X bestimmt werden kann . Hier ist ein Überblick über die Ableitung.YmYX
Schreibe für die pgf von X , wobei (per Definition) p n = Pr ( X = n ) ist . m Y wird aus X so konstruiert, dass sein pgf, q , istp(x)=p0+p1x+⋯+pnxn+⋯Xpn= Pr ( X= n )m YXq
q(x)=(p0+p1+⋯+pm−1)+(pm+pm+1+⋯+p2m−1)xm+⋯+(pnm+pnm+1+⋯+p(n+1)m−1)xnm+⋯.
Because this converges absolutely for |x|≤1, we can rearrange the terms into a sum of pieces of the form
Dm,tp(x)=pt+pt+mxm+⋯+pt+nmxnm+⋯
für . Die Potenzreihen der Funktionen x t D m , t p bestehen aus jedem m- ten Term der Reihe von p, beginnend mit dem t- ten : Dies wird manchmal als Dezimation von p bezeichnet . Bei Google-Suchen werden derzeit nur wenige nützliche Informationen zu Dezimierungen angezeigt. Der Vollständigkeit halber wird hier eine Formel abgeleitet.t=0,1,…,m−1xtDm,tpmthptthp
Sei irgendeine primitive m- te Wurzel der Einheit; Nehmen wir zum Beispiel ω = exp ( 2 i π / m ) . Dann folgt aus ω m = 1 und ∑ m - 1 j = 0 ω j = 0, dassωmthω=exp(2iπ/m)ωm=1∑m−1j=0ωj=0
xtDm,tp(x)=1m∑j=0m−1ωtjp(x/ωj).
To see this, note that the operator xtDm,t is linear, so it suffices to check the formula on the basis {1,x,x2,…,xn,…}. Applying the right hand side to xn gives
xtDm,t[xn]=1m∑j=0m−1ωtjxnω−nj=xnm∑j=0m−1ω(t−n)j.
When t and n differ by a multiple of m, each term in the sum equals 1 and we obtain xn. Otherwise, the terms cycle through powers of ωt−n and these sum to zero. Whence this operator preserves all powers of x congruent to t modulo m and kills all the others: it is precisely the desired projection.
A formula for q follows readily by changing the order of summation and recognizing one of the sums as geometric, thereby writing it in closed form:
q(x)=∑t=0m−1(Dm,t[p])(x)=∑t=0m−1x−t1m∑j=0m−1ωtjp(ω−jx)=1m∑j=0m−1p(ω−jx)∑t=0m−1(ωj/x)t=x(1−x−m)m∑j=0m−1p(ω−jx)x−ωj.
For example, the pgf of a Poisson distribution of parameter λ is p(x)=exp(λ(x−1)). With m=2, ω=−1 and the pgf of 2Y will be
q(x)=x(1−x−2)2∑j=02−1p((−1)−jx)x−(−1)j=x−1/x2(exp(λ(x−1))x−1+exp(λ(−x−1))x+1)=exp(−λ)(sinh(λx)x+cosh(λx)).
One use of this approach is to compute moments of X and mY. The value of the kth derivative of the pgf evaluated at x=1 is the kth factorial moment. The kth moment is a linear combination of the first k factorial moments. Using these observations we find, for instance, that for a Poisson distributed X, its mean (which is the first factorial moment) equals λ, the mean of 2⌊(X/2)⌋ equals λ−12+12e−2λ, and the mean of 3⌊(X/3)⌋ equals λ−1+e−3λ/2(sin(3√λ2)3√+cos(3√λ2)):
The means for m=1,2,3 are shown in blue, red, and yellow, respectively, as functions of λ: asymptotically, the mean drops by (m−1)/2 compared to the original Poisson mean.
Similar formulas for the variances can be obtained. (They get messy as m rises and so are omitted. One thing they definitively establish is that when m>1 no multiple of Y is Poisson: it does not have the characteristic equality of mean and variance) Here is a plot of the variances as a function of λ for m=1,2,3:
It is interesting that for larger values of λ the variances increase. Intuitively, this is due to two competing phenomena: the floor function is effectively binning groups of values that originally were distinct; this must cause the variance to decrease. At the same time, as we have seen, the means are changing, too (because each bin is represented by its smallest value); this must cause a term equal to the square of the difference of means to be added back. The increase in variance for large λ becomes larger with larger values of m.
The behavior of the variance of mY with m is surprisingly complex. Let's end with a quick simulation (in R
) showing what it can do. The plots show the difference between the variance of m⌊X/m⌋ and the variance of X for Poisson distributed X with various values of λ ranging from 1 through 5000. In all cases the plots appear to have reached their asymptotic values at the right.
set.seed(17)
par(mfrow=c(3,4))
temp <- sapply(c(1,2,5,10,20,50,100,200,500,1000,2000,5000), function(lambda) {
x <- rpois(20000, lambda)
v <- sapply(1:floor(lambda + 4*sqrt(lambda)),
function(m) var(floor(x/m)*m) - var(x))
plot(v, type="l", xlab="", ylab="Increased variance",
main=toString(lambda), cex.main=.85, col="Blue", lwd=2)
})