Ich habe einige Experimente mit simulierten Daten durchgeführt, um herauszufinden, welche Methode am besten funktioniert. Bitte lesen Sie meine Ergebnisse unten.
Schauen wir uns zwei verschiedene Szenarien an: Erstens, wo es keine direkte Beziehung zwischen DUI & Liquor Stores gibt, und zweitens, wo wir eine direkte Beziehung haben. Untersuchen Sie dann jede der Methoden, um festzustellen, welche Methode am besten funktioniert.
Fall 1: Keine direkte Beziehung, aber beide hängen mit der Bevölkerung zusammen
library(rmutil)
############
## Simulating Data
set.seed(111)
# Simulating city populations
popln <- rpareto(n=10000,m=10000,s=1.2)
# Simulating DUI numbers
e1 <- rnorm(10000,mean=0,sd=15)
DUI = 100 + popln * 0.04 + e1
summary(DUI)
truehist(log(DUI))
# Simulating Nbr of Liquor stores
e2 <- rnorm(100,mean=0,sd=5)
Nbr_Liquor_Stores = 20 + popln * 0.009 + e2
summary(Nbr_Liquor_Stores)
truehist(log(Nbr_Liquor_Stores))
dat <- data.frame(popln,DUI,Nbr_Liquor_Stores)
Nachdem die Daten simuliert wurden, können Sie sehen, wie sich die einzelnen Methoden entwickeln.
## Method 0: Simple OLS
fit0 <- lm(DUI~Nbr_Liquor_Stores,data=dat)
summary(fit0)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.4353630 0.2801544 33.68 <2e-16 ***
Nbr_Liquor_Stores 4.4444207 0.0001609 27617.49 <2e-16 ***
Nbr_Liquor_Stores ist erwartungsgemäß von hoher Bedeutung. Obwohl die Beziehung indirekt ist.
## Method 1: Divide Liquor Stores by population and then regress
fit1 <- lm( I(DUI/popln) ~ Nbr_Liquor_Stores, data=dat)
summary(fit1)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.981e-01 4.143e-02 12.022 <2e-16 ***
Nbr_Liquor_Stores -1.325e-05 2.380e-05 -0.557 0.578
Nbr_Liquor_Stores hat keine Bedeutung. Scheint zu funktionieren, aber lassen Sie uns noch nicht zu Schlussfolgerungen springen.
## Method 2: Divide Liquor Stores by population and then regress
fit2 <- lm( DUI ~ Nbr_Liquor_Stores + popln, data=dat)
summary(fit2)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.003e+02 6.022e-01 166.569 <2e-16 ***
Nbr_Liquor_Stores -1.603e-02 3.042e-02 -0.527 0.598
popln 4.014e-02 2.738e-04 146.618 <2e-16 ***
Nbr_Liquor_Stores nicht signifikant, p-Wert liegt auch ziemlich nahe an Methode 1.
## Method 3: "DUI per capita" on "liquer stores per capita" and "population size"
fit3 <- lm( I(DUI/popln) ~ I(Nbr_Liquor_Stores/popln) + popln, data=dat)
summary(fit3)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.841e-02 1.300e-02 2.187 0.0288 *
I(Nbr_Liquor_Stores/popln) 4.886e+00 1.603e-02 304.867 <2e-16 ***
popln -8.426e-09 6.675e-08 -0.126 0.8996
(Nbr_Liquor_Stores / popln) von hoher Bedeutung! Ich habe das nicht erwartet, vielleicht ist diese Methode nicht die beste für Ihre Problemstellung.
Fall 2: Direkte Beziehung zu Population & Nbr_Liquor_Stores
### Simulating Data
set.seed(111)
# Simulating city populations
popln <- rpareto(n=10000,m=10000,s=1.2)
# Simulating Nbr of Liquor stores
e2 <- rnorm(100,mean=0,sd=5)
Nbr_Liquor_Stores = 20 + popln * 0.009 + e2
summary(Nbr_Liquor_Stores)
truehist(log(Nbr_Liquor_Stores))
# Simulating DUI numbers
e1 <- rnorm(10000,mean=0,sd=15)
DUI = 100 + popln * 0.021 + Nbr_Liquor_Stores * 0.01 + e1
summary(DUI)
truehist(log(DUI))
dat <- data.frame(popln,DUI,Nbr_Liquor_Stores)
Sehen wir uns die Leistung der einzelnen Methoden in diesem Szenario an.
## Method 0: Simple OLS
fit0 <- lm(DUI~Nbr_Liquor_Stores,data=dat)
summary(fit0)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.244e+01 1.951e-01 268.8 <2e-16 ***
Nbr_Liquor_Stores 2.343e+00 1.121e-04 20908.9 <2e-16 ***
Erwartet, aber keine großartige Methode, um kausale Schlussfolgerungen zu ziehen.
## Method 1: Divide Liquor Stores by population and then regress
fit1 <- lm( I(DUI/popln) ~ Nbr_Liquor_Stores, data=dat)
summary(fit1)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.705e-01 4.005e-02 11.747 <2e-16 ***
Nbr_Liquor_Stores -1.294e-05 2.301e-05 -0.562 0.574
Das ist eine Überraschung für mich. Ich hatte erwartet, dass diese Methode die Beziehung erfasst, aber sie nimmt sie nicht auf. Diese Methode schlägt in diesem Szenario also fehl!
## Method 2: Divide Liquor Stores by population and then regress
fit2 <- lm( DUI ~ Nbr_Liquor_Stores + popln, data=dat)
summary(fit2)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.013e+02 5.945e-01 170.391 <2e-16 ***
Nbr_Liquor_Stores -5.484e-02 2.825e-02 -1.941 0.0523 .
popln 2.158e-02 2.543e-04 84.875 <2e-16 ***
Nbr_Liquor_Stores ist signifikant, der p-Wert ist sehr sinnvoll. Ein klarer Gewinner für mich.
## Method 3: "DUI per capita" on "liquer stores per capita" and "population size"
fit3 <- lm( I(DUI/popln) ~ I(Nbr_Liquor_Stores/popln) + popln, data=dat)
summary(fit3)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.540e-02 1.485e-02 4.405 1.07e-05 ***
I(Nbr_Liquor_Stores/popln) 3.915e+00 1.553e-02 252.063 < 2e-16 ***
popln -2.056e-08 7.635e-08 -0.269 0.788
TLDR; Methode 2 erzeugt die genauesten p-Werte in verschiedenen Szenarien.