Was sind die Hauptunterschiede zwischen Daten mit geringer Dichte und fehlenden Daten? Und wie beeinflusst es das maschinelle Lernen? Genauer gesagt, welche Auswirkung haben spärliche Daten und fehlende Daten auf Klassifizierungsalgorithmen und Regressionsalgorithmen (Vorhersage von Zahlen). Ich spreche von einer Situation, in der der Prozentsatz fehlender Daten erheblich ist und wir die Zeilen mit den fehlenden Daten nicht löschen können.