Das erste, was Sie überprüfen möchten, ist, ob der Autor über rohe Polynome vs. orthogonale Polynome spricht .
Für orthogonale Polynome. Die Koeffizienten werden nicht "größer".
Hier sind zwei Beispiele für eine Polynomexpansion 2. und 15. Ordnung. Zunächst zeigen wir den Koeffizienten für die Expansion 2. Ordnung.
summary(lm(mpg~poly(wt,2),mtcars))
Call:
lm(formula = mpg ~ poly(wt, 2), data = mtcars)
Residuals:
Min 1Q Median 3Q Max
-3.483 -1.998 -0.773 1.462 6.238
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.0906 0.4686 42.877 < 2e-16 ***
poly(wt, 2)1 -29.1157 2.6506 -10.985 7.52e-12 ***
poly(wt, 2)2 8.6358 2.6506 3.258 0.00286 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.651 on 29 degrees of freedom
Multiple R-squared: 0.8191, Adjusted R-squared: 0.8066
F-statistic: 65.64 on 2 and 29 DF, p-value: 1.715e-11
Dann zeigen wir 15. Ordnung.
summary(lm(mpg~poly(wt,15),mtcars))
Call:
lm(formula = mpg ~ poly(wt, 15), data = mtcars)
Residuals:
Min 1Q Median 3Q Max
-5.3233 -0.4641 0.0072 0.6401 4.0394
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.0906 0.4551 44.147 < 2e-16 ***
poly(wt, 15)1 -29.1157 2.5743 -11.310 4.83e-09 ***
poly(wt, 15)2 8.6358 2.5743 3.355 0.00403 **
poly(wt, 15)3 0.2749 2.5743 0.107 0.91629
poly(wt, 15)4 -1.7891 2.5743 -0.695 0.49705
poly(wt, 15)5 1.8797 2.5743 0.730 0.47584
poly(wt, 15)6 -2.8354 2.5743 -1.101 0.28702
poly(wt, 15)7 2.5613 2.5743 0.995 0.33459
poly(wt, 15)8 1.5772 2.5743 0.613 0.54872
poly(wt, 15)9 -5.2412 2.5743 -2.036 0.05866 .
poly(wt, 15)10 -2.4959 2.5743 -0.970 0.34672
poly(wt, 15)11 2.5007 2.5743 0.971 0.34580
poly(wt, 15)12 2.4263 2.5743 0.942 0.35996
poly(wt, 15)13 -2.0134 2.5743 -0.782 0.44559
poly(wt, 15)14 3.3994 2.5743 1.320 0.20525
poly(wt, 15)15 -3.5161 2.5743 -1.366 0.19089
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.574 on 16 degrees of freedom
Multiple R-squared: 0.9058, Adjusted R-squared: 0.8176
F-statistic: 10.26 on 15 and 16 DF, p-value: 1.558e-05
Beachten Sie, dass wir orthogonale Polynome verwenden , sodass der Koeffizient niedrigerer Ordnung genau mit den entsprechenden Begriffen in den Ergebnissen höherer Ordnung übereinstimmt. Beispielsweise ist der Achsenabschnitt und der Koeffizient für die erste Ordnung für beide Modelle 20.09 und -29.11.
Auf der anderen Seite wird so etwas nicht passieren, wenn wir Roh-Expansion verwenden. Und wir werden große und empfindliche Koeffizienten haben! Im folgenden Beispiel sehen wir, dass die Koeffizienten in der Größenordnung von liegen.106
> summary(lm(mpg~poly(wt,15, raw=T),mtcars))
Call:
lm(formula = mpg ~ poly(wt, 15, raw = T), data = mtcars)
Residuals:
Min 1Q Median 3Q Max
-5.6217 -0.7544 0.0306 1.1678 5.4308
Coefficients: (3 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.287e+05 9.991e+05 0.629 0.537
poly(wt, 15, raw = T)1 -2.713e+06 4.195e+06 -0.647 0.526
poly(wt, 15, raw = T)2 5.246e+06 7.893e+06 0.665 0.514
poly(wt, 15, raw = T)3 -6.001e+06 8.784e+06 -0.683 0.503
poly(wt, 15, raw = T)4 4.512e+06 6.427e+06 0.702 0.491
poly(wt, 15, raw = T)5 -2.340e+06 3.246e+06 -0.721 0.480
poly(wt, 15, raw = T)6 8.537e+05 1.154e+06 0.740 0.468
poly(wt, 15, raw = T)7 -2.184e+05 2.880e+05 -0.758 0.458
poly(wt, 15, raw = T)8 3.809e+04 4.910e+04 0.776 0.447
poly(wt, 15, raw = T)9 -4.212e+03 5.314e+03 -0.793 0.438
poly(wt, 15, raw = T)10 2.382e+02 2.947e+02 0.809 0.429
poly(wt, 15, raw = T)11 NA NA NA NA
poly(wt, 15, raw = T)12 -5.642e-01 6.742e-01 -0.837 0.413
poly(wt, 15, raw = T)13 NA NA NA NA
poly(wt, 15, raw = T)14 NA NA NA NA
poly(wt, 15, raw = T)15 1.259e-04 1.447e-04 0.870 0.395
Residual standard error: 2.659 on 19 degrees of freedom
Multiple R-squared: 0.8807, Adjusted R-squared: 0.8053
F-statistic: 11.68 on 12 and 19 DF, p-value: 2.362e-06