Vorteile der Partikelschwarmoptimierung gegenüber der Bayes'schen Optimierung für das Hyperparameter-Tuning?


18

Es gibt umfangreiche aktuelle Forschungen zur Bayesianischen Optimierung (1) zur Optimierung von ML-Hyperparametern. Die treibende Motivation dabei ist, dass eine minimale Anzahl von Datenpunkten erforderlich ist, um fundierte Entscheidungen darüber zu treffen, welche Punkte es wert sind, ausprobiert zu werden (objektive Funktionsaufrufe sind teuer, weniger zu machen ist also besser), da das Trainieren eines Modells zeitintensiv ist - zum Teil bescheiden -große SVM-Probleme, an denen ich gearbeitet habe, können zwischen Minuten und Stunden dauern.

Auf der anderen Seite handelt es sich bei Optunity um eine Partikelschwarm-Implementierung, die sich derselben Aufgabe widmet . Ich kenne PSO nicht überwiegend, aber es scheint weniger effizient zu sein, da eine größere Anzahl von Testpunkten und daher objektive Funktionsbewertungen erforderlich sind, um die Hyperparameteroberfläche zu bewerten.

Fehlt mir ein wichtiges Detail, das PSO im Kontext des maschinellen Lernens gegenüber BO bevorzugt? Oder ist die Wahl zwischen beiden immer inhärent kontextbezogen für die Hyperparameter-Tuning-Aufgabe?


(1) Shahriari et al.


braucht kein Gefälle. arbeitet mit Diskontinuität. mäßig effizient. behandelt mehrere Dimensionen. behandelt Geräusche gut. Hat eingebaute Robustheit des Schätzers.
EngrStudent

@EngrStudent Sie können all diese Dinge über BO sagen, mit der Ausnahme, dass BO effizienter zu sein scheint, da es, zumindest nach meiner Einschätzung, eine geringere Anzahl von Funktionsbewertungen erfordert. Ich frage nicht nach PSO im Allgemeinen, ich frage nach den Vorzügen in Bezug auf BO.
Sycorax sagt Reinstate Monica

1
Das Thema ist nicht gut genug ausgebildet, um eine endgültige Antwort zu geben, aber ich denke, dass die Bayes'sche Optimierung dasselbe Schicksal erleiden sollte wie die effizientesten Optimierer mit hochgradig multimodalen Problemen (siehe: 95% der Probleme mit maschinellem Lernen): Es ist gleich Null das nächstgelegene lokale Minimum, ohne den globalen Raum zu "überblicken". Ich denke, dass Partikelschwarm besseres Glück haben würde, nicht lokale Minima zu finden.
Cliff AB

2
Entschuldigung für meine verspätete Ankunft auf der Party, nicht sicher, wie ich es geschafft habe, eine Frage über Optunity so lange zu übersehen! :-)
Marc Claesen

1
@MarcClaesen Ich muss zugeben, ich hatte gehofft, dass Sie irgendwann die Zeit finden würden, zu antworten. Spät oder nicht, ich denke wir sind alle froh, dass Sie angekommen sind.
Sycorax sagt Reinstate Monica

Antworten:


25

Als Hauptentwickler von Optunity füge ich meine zwei Cent hinzu.

Wir haben umfangreiche Benchmarks durchgeführt, um Optunity mit den beliebtesten Bayes'schen Lösern (z. B. Hyperopt, SMAC, Bayesopt) für reale Probleme zu vergleichen, und die Ergebnisse zeigen, dass PSO in vielen praktischen Fällen tatsächlich nicht weniger effizient ist. In unserem Benchmark, der aus der Optimierung von SVM-Klassifikatoren für verschiedene Datensätze besteht, ist Optunity tatsächlich effizienter als Hyperopt und SMAC, jedoch etwas weniger effizient als BayesOpt. Ich würde die Ergebnisse gerne hier veröffentlichen, aber ich werde warten, bis Optunity endlich in JMLR veröffentlicht wird (wird seit über einem Jahr überprüft, also halten Sie nicht den Atem an ...).

Wie Sie bereits angedeutet haben, ist Effizienzsteigerung ein häufig verwendetes Verkaufsargument für die Bayes'sche Optimierung, in der Praxis jedoch nur dann, wenn die Annahmen der zugrunde liegenden Ersatzmodelle zutreffen, was alles andere als trivial ist. In unseren Experimenten ist der sehr einfache PSO-Löser von Optunity in Bezug auf die Anzahl der Funktionsbewertungen häufig mit komplexen Bayes'schen Ansätzen konkurrierend. Bayesianische Löser funktionieren sehr gut, wenn sie mit guten Prioritäten versehen sind, aber mit einem nicht informativen Prior gibt es praktisch keinen strukturellen Vorteil gegenüber metaheuristischen Methoden wie PSO in Bezug auf die Effizienz.

Ein großes Verkaufsargument für PSO ist die Tatsache, dass es peinlich parallel ist. Die Bayes'sche Optimierung ist aufgrund ihrer inhärenten Abfolge oft schwer zu parallelisieren (die Implementierung von Hyperopt ist die einzige echte Ausnahme). Angesichts der zur Norm gewordenen Vertriebsmöglichkeiten übernimmt Optunity schnell die Führung in der Wanduhrzeit, um gute Lösungen zu erhalten.

Ein weiterer wesentlicher Unterschied zwischen Optunity und den meisten anderen dedizierten Hyperparameter-Optimierungsbibliotheken besteht in der Zielgruppe: Optunity verfügt über die einfachste Benutzeroberfläche und richtet sich an Experten, die nicht über maschinelles Lernen verfügen an Spezialisten gerichtet).

Der Grund, warum wir die Bibliothek erstellt haben, ist, dass es trotz der Tatsache, dass dedizierte Methoden zur Optimierung von Hyperparametern existieren, diese in der Praxis nicht angewendet werden. Die meisten Leute stimmen sich immer noch entweder gar nicht manuell oder über naive Ansätze wie Raster oder Zufallssuche ab. Ein Hauptgrund dafür ist unserer Meinung nach die Tatsache, dass vorhandene Bibliotheken vor der Entwicklung von Optunity in Bezug auf Installation, Dokumentation und API zu schwierig zu verwenden waren und häufig auf eine einzige Umgebung beschränkt waren.


4
So informierte eine Antwort wie wir bekommen konnten! Ich bin neugierig: Sie sagen, PSO-Löser ist mit Bayesian Optimization-Ansätzen konkurrenzfähig. Soll das heißen , dass der parallele PSO- Lauf schneller ist als der sequentielle Bayseian Optimization- Lauf ? Ich versuche nicht gemein zu sein, aber es ist ein wichtiger Unterschied, den ich verstehen muss.
Cliff AB

2
Nein, beide laufen nacheinander. In unseren Experimenten (Optimieren von SVMs) ist die Effizienz der PSO- und Bayes-Optimierung in Bezug auf die Anzahl der Funktionsbewertungen wettbewerbsfähig. Wir haben die Effizienz in Bezug auf die Zeit der Wanduhr in verteilten Umgebungen nicht verglichen, da dies ein wenig billig wäre, da viele Bayes'sche Optimierungsmethoden dies einfach nicht können.
Marc Claesen

Das ist interessant. Irgendwelche Gedanken darüber, warum? Instabile Hyperparameteroberfläche?
Cliff AB

3
Ich denke, dass es mehrere Gründe gibt. Zum einen weisen Hyperparameteroberflächen viele lokale Optima auf (z. B. aufgrund endlicher Stichprobeneffekte, Kreuzvalidierungsfalten und inhärenter Zufälligkeit bei einigen Lernansätzen). Zweitens beruht die Bayes'sche Optimierung auf dem Aufbau genauer Ersatzzielfunktionen, was keine leichte Aufgabe ist, bis die Zielfunktion viele Male abgetastet wurde. Die Bayes'sche Optimierung dauert eine Weile, bis sich die Konvergenz beschleunigt (ein häufig weggelassenes Detail). Zu dieser Zeit haben auch metaheuristische Methoden wie PSO ihre lokale Suchphase erreicht. PSO ist sehr gut in der lokalen Suche.
Marc Claesen

4
+1 für eine hervorragende Antwort. Ich habe meine eigene BO-Software erstellt, die zu diesem Zeitpunkt zumeist ein Eitelkeitsprojekt ist. Daher verstehe ich, wie die BO-Prozedur im Detail funktioniert. Ich bin froh, dass ich anfangen kann, die Oberfläche dessen zu kratzen, was sonst noch in der Welt der Hyperparameter-Optimierung vor sich geht. Ihre Bemerkung zu naiven Ansätzen kommt bei mir sehr gut an, da eines meiner älteren naiven Optimierungsprogramme seit einer Woche ein Modell optimiert, ohne dass ein Ende in Sicht ist ... Vielen Dank für Ihren Beitrag, und ich bin sicher, dass ich das tun werde Weitere Fragen, sobald ich das verdaue.
Sycorax sagt Reinstate Monica

0

Die Antwort ist problemabhängig und kann nicht ohne zusätzlichen Kontext gegeben werden. Typischerweise würde die Antwort wie folgt lauten. Die Bayes'sche Optimierung eignet sich eher für niedrigdimensionale Probleme mit einem Rechenbudget von bis zu 10x-100x der Anzahl der Variablen. PSO kann für viel größere Budgets recht effizient sein, ist jedoch nicht auf dem neuesten Stand der Technik in seiner Nische.


Kommentare sind nicht für längere Diskussionen gedacht. Diese Unterhaltung wurde in den Chat verschoben .
gung - Wiedereinsetzung von Monica
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.