Ich möchte die Hyperparameter von XGboost mithilfe der Kreuzvalidierung optimieren. Es ist jedoch nicht klar, wie man das Modell erhält xgb.cv. Zum Beispiel rufe ich objective(params)von an fmin. Dann wird das Modell montiert dtrainund validiert dvalid. Was ist, wenn ich KFold Crossvalidation verwenden möchte, anstatt zu trainieren dtrain?
from hyperopt import fmin, tpe
import xgboost as xgb
params = {
'n_estimators' : hp.quniform('n_estimators', 100, 1000, 1),
'eta' : hp.quniform('eta', 0.025, 0.5, 0.025),
'max_depth' : hp.quniform('max_depth', 1, 13, 1)
#...
}
best = fmin(objective, space=params, algo=tpe.suggest)
def objective(params):
dtrain = xgb.DMatrix(X_train, label=y_train)
dvalid = xgb.DMatrix(X_valid, label=y_valid)
watchlist = [(dtrain, 'train'), (dvalid, 'eval')]
model = xgb.train(params, dtrain, num_boost_round,
evals=watchlist, feval=myFunc)
# xgb.cv(param, dtrain, num_boost_round, nfold = 5, seed = 0,
# feval=myFunc)