Dieses Autoencoder-Netzwerk kann nicht ordnungsgemäß funktionieren (mit Faltungs- und Maxpool-Schichten).


9

Autoencoder- Netzwerke scheinen viel schwieriger zu sein als normale Klassifikator-MLP-Netzwerke. Nach mehreren Versuchen mit Lasagne ist alles, was ich in der rekonstruierten Ausgabe bekomme, etwas, das im besten Fall einer verschwommenen Mittelung aller Bilder der MNIST- Datenbank ähnelt, ohne zu unterscheiden, was die eingegebene Ziffer tatsächlich ist.

Die von mir gewählte Netzwerkstruktur besteht aus folgenden Kaskadenschichten:

  1. Eingabeebene (28x28)
  2. 2D-Faltungsschicht, Filtergröße 7x7
  3. Max Pooling Schicht, Größe 3x3, Schritt 2x2
  4. Dichte (vollständig verbundene) Abflachungsschicht, 10 Einheiten (dies ist der Engpass)
  5. Dichte (vollständig verbundene) Schicht, 121 Einheiten
  6. Umformen der Ebene auf 11x11
  7. 2D-Faltungsschicht, Filtergröße 3x3
  8. 2D Upscaling Layer Faktor 2
  9. 2D-Faltungsschicht, Filtergröße 3x3
  10. 2D Upscaling Layer Faktor 2
  11. 2D-Faltungsschicht, Filtergröße 5x5
  12. Feature maximales Pooling (von 31x28x28 bis 28x28)

Alle 2D-Faltungsschichten haben die gelösten Vorspannungen, Sigmoidaktivierungen und 31 Filter.

Alle vollständig verbundenen Schichten weisen Sigmoidaktivierungen auf.

Die verwendete Verlustfunktion ist ein quadratischer Fehler , die Aktualisierungsfunktion ist adagrad. Die Länge des Chunks für das Lernen beträgt 100 Samples, multipliziert mit 1000 Epochen.

Das Folgende veranschaulicht das Problem: In der oberen Reihe sind einige Beispiele als Eingaben des Netzwerks festgelegt, in der unteren Reihe ist die Rekonstruktion:

Autoencoder Ein- und Ausgang

Der Vollständigkeit halber habe ich folgenden Code verwendet:

import theano.tensor as T
import theano
import sys
sys.path.insert(0,'./Lasagne') # local checkout of Lasagne
import lasagne
from theano import pp
from theano import function
import gzip
import numpy as np
from sklearn.preprocessing import OneHotEncoder
import matplotlib.pyplot as plt
def load_mnist():

    def load_mnist_images(filename):
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=16)
        # The inputs are vectors now, we reshape them to monochrome 2D images,
        # following the shape convention: (examples, channels, rows, columns)
        data = data.reshape(-1, 1, 28, 28)
        # The inputs come as bytes, we convert them to float32 in range [0,1].
        # (Actually to range [0, 255/256], for compatibility to the version
        # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.)
        return data / np.float32(256)

    def load_mnist_labels(filename):
        # Read the labels in Yann LeCun's binary format.
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=8)
        # The labels are vectors of integers now, that's exactly what we want.
        return data

    X_train = load_mnist_images('train-images-idx3-ubyte.gz')
    y_train = load_mnist_labels('train-labels-idx1-ubyte.gz')
    X_test = load_mnist_images('t10k-images-idx3-ubyte.gz')
    y_test = load_mnist_labels('t10k-labels-idx1-ubyte.gz')
    return X_train, y_train, X_test, y_test

def plot_filters(conv_layer):
    W = conv_layer.get_params()[0]
    W_fn = theano.function([],W)
    params = W_fn()
    ks = np.squeeze(params)
    kstack = np.vstack(ks)
    plt.imshow(kstack,interpolation='none')
    plt.show()

def main():

    #theano.config.exception_verbosity="high"
    #theano.config.optimizer='None'

    X_train, y_train, X_test, y_test = load_mnist()
    ohe = OneHotEncoder()

    y_train = ohe.fit_transform(np.expand_dims(y_train,1)).toarray()
    chunk_len = 100
    visamount = 10
    num_epochs = 1000
    num_filters=31
    dropout_p=.0
    print "X_train.shape",X_train.shape,"y_train.shape",y_train.shape
    input_var = T.tensor4('X')
    output_var = T.tensor4('X')
    conv_nonlinearity = lasagne.nonlinearities.sigmoid
    net = lasagne.layers.InputLayer((chunk_len,1,28,28), input_var)
    conv1 = net = lasagne.layers.Conv2DLayer(net,num_filters,(7,7),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(2,2))
    net = lasagne.layers.DropoutLayer(net,p=dropout_p)
    #conv2_layer = lasagne.layers.Conv2DLayer(dropout_layer,num_filters,(3,3),nonlinearity=conv_nonlinearity)
    #pool2_layer = lasagne.layers.MaxPool2DLayer(conv2_layer,(3,3),stride=(2,2))
    net = lasagne.layers.DenseLayer(net,10,nonlinearity=lasagne.nonlinearities.sigmoid)

    #augment_layer1 = lasagne.layers.DenseLayer(reduction_layer,33,nonlinearity=lasagne.nonlinearities.sigmoid)
    net = lasagne.layers.DenseLayer(net,121,nonlinearity=lasagne.nonlinearities.sigmoid)

    net = lasagne.layers.ReshapeLayer(net,(chunk_len,1,11,11))

    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.Upscale2DLayer(net,2)

    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    #pool_after0 = lasagne.layers.MaxPool2DLayer(conv_after1,(3,3),stride=(2,2))
    net = lasagne.layers.Upscale2DLayer(net,2)

    net = lasagne.layers.DropoutLayer(net,p=dropout_p)

    #conv_after2 = lasagne.layers.Conv2DLayer(upscale_layer1,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    #pool_after1 = lasagne.layers.MaxPool2DLayer(conv_after2,(3,3),stride=(1,1))
    #upscale_layer2 = lasagne.layers.Upscale2DLayer(pool_after1,4)

    net = lasagne.layers.Conv2DLayer(net,num_filters,(5,5),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.FeaturePoolLayer(net,num_filters,pool_function=theano.tensor.max)
    print "output_shape:",lasagne.layers.get_output_shape(net)
    params = lasagne.layers.get_all_params(net, trainable=True)
    prediction = lasagne.layers.get_output(net)
    loss = lasagne.objectives.squared_error(prediction, output_var)
    #loss = lasagne.objectives.binary_crossentropy(prediction, output_var)
    aggregated_loss = lasagne.objectives.aggregate(loss)
    updates = lasagne.updates.adagrad(aggregated_loss,params)
    train_fn = theano.function([input_var, output_var], loss, updates=updates)

    test_prediction = lasagne.layers.get_output(net, deterministic=True)
    predict_fn = theano.function([input_var], test_prediction)

    print "starting training..."
    for epoch in range(num_epochs):
        selected = list(set(np.random.random_integers(0,59999,chunk_len*4)))[:chunk_len]
        X_train_sub = X_train[selected,:]
        _loss = train_fn(X_train_sub, X_train_sub)
        print("Epoch %d: Loss %g" % (epoch + 1, np.sum(_loss) / len(X_train)))
        """
        chunk = X_train[0:chunk_len,:,:,:]
        result = predict_fn(chunk)
        vis1 = np.hstack([chunk[j,0,:,:] for j in range(visamount)])
        vis2 = np.hstack([result[j,0,:,:] for j in range(visamount)])
        plt.imshow(np.vstack([vis1,vis2]))
        plt.show()
        """
    print "done."

    chunk = X_train[0:chunk_len,:,:,:]
    result = predict_fn(chunk)
    print "chunk.shape",chunk.shape
    print "result.shape",result.shape
    plot_filters(conv1)
    for i in range(chunk_len/visamount):
        vis1 = np.hstack([chunk[i*visamount+j,0,:,:] for j in range(visamount)])
        vis2 = np.hstack([result[i*visamount+j,0,:,:] for j in range(visamount)])
        plt.imshow(np.vstack([vis1,vis2]))
        plt.show()
    import ipdb; ipdb.set_trace()

if __name__ == "__main__":
    main()

Irgendwelche Ideen, wie man dieses Netzwerk verbessern kann, um einen einigermaßen funktionierenden Autoencoder zu erhalten?

Problem gelöst!

Bei einer ganz anderen Implementierung wird ein undichter Gleichrichter anstelle einer Sigmoidfunktion in den Faltungsschichten verwendet, nur 2 (!!) Knoten in der Engpassschicht und Faltungen mit 1x1-Kerneln am Ende.

Hier ist das Ergebnis einiger Rekonstruktionen:

Geben Sie hier die Bildbeschreibung ein

Code:

import theano.tensor as T
import theano
import sys
sys.path.insert(0,'./Lasagne') # local checkout of Lasagne
import lasagne
from theano import pp
from theano import function
import theano.tensor.nnet
import gzip
import numpy as np
from sklearn.preprocessing import OneHotEncoder
import matplotlib.pyplot as plt
def load_mnist():

    def load_mnist_images(filename):
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=16)
        # The inputs are vectors now, we reshape them to monochrome 2D images,
        # following the shape convention: (examples, channels, rows, columns)
        data = data.reshape(-1, 1, 28, 28)
        # The inputs come as bytes, we convert them to float32 in range [0,1].
        # (Actually to range [0, 255/256], for compatibility to the version
        # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.)
        return data / np.float32(256)

    def load_mnist_labels(filename):
        # Read the labels in Yann LeCun's binary format.
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=8)
        # The labels are vectors of integers now, that's exactly what we want.
        return data

    X_train = load_mnist_images('train-images-idx3-ubyte.gz')
    y_train = load_mnist_labels('train-labels-idx1-ubyte.gz')
    X_test = load_mnist_images('t10k-images-idx3-ubyte.gz')
    y_test = load_mnist_labels('t10k-labels-idx1-ubyte.gz')
    return X_train, y_train, X_test, y_test

def main():

    X_train, y_train, X_test, y_test = load_mnist()
    ohe = OneHotEncoder()

    y_train = ohe.fit_transform(np.expand_dims(y_train,1)).toarray()
    chunk_len = 100
    num_epochs = 10000
    num_filters=7
    input_var = T.tensor4('X')
    output_var = T.tensor4('X')
    #conv_nonlinearity = lasagne.nonlinearities.sigmoid
    #conv_nonlinearity = lasagne.nonlinearities.rectify
    conv_nonlinearity = lasagne.nonlinearities.LeakyRectify(.1)
    softplus = theano.tensor.nnet.softplus
    #conv_nonlinearity = theano.tensor.nnet.softplus
    net = lasagne.layers.InputLayer((chunk_len,1,28,28), input_var)
    conv1 = net = lasagne.layers.Conv2DLayer(net,num_filters,(7,7),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(2,2))
    net = lasagne.layers.DenseLayer(net,2,nonlinearity=lasagne.nonlinearities.sigmoid)
    net = lasagne.layers.DenseLayer(net,49,nonlinearity=lasagne.nonlinearities.sigmoid)
    net = lasagne.layers.ReshapeLayer(net,(chunk_len,1,7,7))
    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(1,1))
    net = lasagne.layers.Upscale2DLayer(net,4)
    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(1,1))
    net = lasagne.layers.Upscale2DLayer(net,4)
    net = lasagne.layers.Conv2DLayer(net,num_filters,(5,5),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.Conv2DLayer(net,num_filters,(1,1),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.FeaturePoolLayer(net,num_filters,pool_function=theano.tensor.max)
    net = lasagne.layers.Conv2DLayer(net,1,(1,1),nonlinearity=conv_nonlinearity,untie_biases=True)
    print "output shape:",net.output_shape
    params = lasagne.layers.get_all_params(net, trainable=True)
    prediction = lasagne.layers.get_output(net)
    loss = lasagne.objectives.squared_error(prediction, output_var)
    #loss = lasagne.objectives.binary_hinge_loss(prediction, output_var)
    aggregated_loss = lasagne.objectives.aggregate(loss)
    #updates = lasagne.updates.adagrad(aggregated_loss,params)
    updates = lasagne.updates.nesterov_momentum(aggregated_loss,params,0.5)#.005
    train_fn = theano.function([input_var, output_var], loss, updates=updates)

    test_prediction = lasagne.layers.get_output(net, deterministic=True)
    predict_fn = theano.function([input_var], test_prediction)

    print "starting training..."
    for epoch in range(num_epochs):
        selected = list(set(np.random.random_integers(0,59999,chunk_len*4)))[:chunk_len]
        X_train_sub = X_train[selected,:]
        _loss = train_fn(X_train_sub, X_train_sub)
        print("Epoch %d: Loss %g" % (epoch + 1, np.sum(_loss) / len(X_train)))
    print "done."

    chunk = X_train[0:chunk_len,:,:,:]
    result = predict_fn(chunk)
    print "chunk.shape",chunk.shape
    print "result.shape",result.shape
    visamount = 10
    for i in range(10):
        vis1 = np.hstack([chunk[i*visamount+j,0,:,:] for j in range(visamount)])
        vis2 = np.hstack([result[i*visamount+j,0,:,:] for j in range(visamount)])
        plt.imshow(np.vstack([vis1,vis2]))
        plt.show()

    import ipdb; ipdb.set_trace()
if __name__ == "__main__":
    main()

Antworten:


4

Sie erhalten möglicherweise mehr Einblick, indem Sie die Gewichte anstatt nur die Rekonstruktionen visualisieren. Ich hatte ein ähnliches Problem, als meine Vorurteile falsch konfiguriert waren. Alles, was unten steht, basiert auf meinen Erfahrungen beim Schreiben meiner eigenen Lernbibliothek. Sie können den Code hier auf Github http://github.com/josephcatrambone/aij sehen .

Hier ist ein Screenshot meines Programms, wenn es keine Vorurteile gibt. Dies ist nach nur vielleicht zehn Epochen, da ich es eilig habe, diesen Artikel zu beenden:

Nur Gewichte - keine Vorurteile.

Die Gewichtsaktualisierung erfolgt durch folgende Vorgänge:

weights.add_i(positiveProduct.subtract(negativeProduct).elementMultiply(learningRate / (float) batchSize));
//visibleBias.add_i(batch.subtract(negativeVisibleProbabilities).meanRow().elementMultiply(learningRate));
//hiddenBias.add_i(positiveHiddenProbabilities.subtract(negativeHiddenProbabilities).meanRow().elementMultiply(learningRate));

Wenn ich den sichtbaren Bias-Code auskommentiere, erhalte ich folgendes Ergebnis:

Korrigieren Sie die sichtbare Vorspannung.

Wenn ich das Vorzeichen des sichtbaren Bias-Codes vermassle (subtrahieren statt addieren):

visibleBias.subtract_i(batch.subtract(negativeVisibleProbabilities).meanRow().elementMultiply(learningRate));

Ich bekomme dieses Bild:

Umgekehrtes Bias-Vorzeichen.

Welche Schneebälle und erreicht schließlich so etwas wie das, was Sie oben haben. Überprüfen Sie die Beschilderung Ihrer Fehlerfunktionen.

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.