Ich weiß nicht, ob es eine einzige Antwort darauf gibt, wie @jozefg erwähnte. Und so rein aus Spekulation, hier ist eine mögliche Erklärung:
Ich vermute, der Grund dafür ist, dass der Typ - zum Beispiel (a -> b -> b)bei Haskellfoldr - aussagekräftiger ist als jeder Name, den man sich vorstellen könnte. Da die Parameter aund btype alles sein können , kann die Funktion auch so ziemlich alles tun. So können Sie mit Namen sind links wie function, combiner, morphism, und argument, die nicht besonders sinnvoll entweder. Könnte auch einen kurzen, nicht ablenkenden Namen verwenden.
Ein weiteres Beispiel ist die id :: a -> aFunktion: Wie sollten Sie ihr Argument nennen? Auch hier denke ich, dass idder Typ aussagekräftiger ist als sein Argumentname.
Ich stimme Ihnen jedoch zu - es scheint, dass es einen gemeinsamen Namen geben sollte, vielleicht in der Mathematik. Ich hoffe, jemand kann mich diesbezüglich korrigieren.
Einige Beispiele für seinen Namen in echtem Code:
In Haskells Bibliotheken heißt es meistens f(und manchmal operatorin den Kommentaren):
class Foldable t where
-- | Map each element of the structure to a monoid,
-- and combine the results.
foldMap :: Monoid m => (a -> m) -> t a -> m
foldMap f = foldr (mappend . f) mempty
-- | Right-associative fold of a structure.
--
-- @'foldr' f z = 'Prelude.foldr' f z . 'toList'@
foldr :: (a -> b -> b) -> b -> t a -> b
foldr f z t = appEndo (foldMap (Endo . f) t) z
-- | Right-associative fold of a structure,
-- but with strict application of the operator.
foldr' :: (a -> b -> b) -> b -> t a -> b
foldr' f z0 xs = foldl f' id xs z0
where f' k x z = k $! f x z
-- | Left-associative fold of a structure.
--
-- @'foldl' f z = 'Prelude.foldl' f z . 'toList'@
foldl :: (a -> b -> a) -> a -> t b -> a
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
-- | Left-associative fold of a structure.
-- but with strict application of the operator.
--
-- @'foldl' f z = 'List.foldl'' f z . 'toList'@
foldl' :: (a -> b -> a) -> a -> t b -> a
foldl' f z0 xs = foldr f' id xs z0
where f' x k z = k $! f z x
-- | A variant of 'foldr' that has no base case,
-- and thus may only be applied to non-empty structures.
--
-- @'foldr1' f = 'Prelude.foldr1' f . 'toList'@
foldr1 :: (a -> a -> a) -> t a -> a
foldr1 f xs = fromMaybe (error "foldr1: empty structure")
(foldr mf Nothing xs)
where
mf x Nothing = Just x
mf x (Just y) = Just (f x y)
-- | A variant of 'foldl' that has no base case,
-- and thus may only be applied to non-empty structures.
--
-- @'foldl1' f = 'Prelude.foldl1' f . 'toList'@
foldl1 :: (a -> a -> a) -> t a -> a
foldl1 f xs = fromMaybe (error "foldl1: empty structure")
(foldl mf Nothing xs)
where
mf Nothing y = Just y
mf (Just x) y = Just (f x y)
-- instances for Prelude types
instance Foldable Maybe where
foldr _ z Nothing = z
foldr f z (Just x) = f x z
foldl _ z Nothing = z
foldl f z (Just x) = f z x
instance Ix i => Foldable (Array i) where
foldr f z = Prelude.foldr f z . elems
foldl f z = Prelude.foldl f z . elems
foldr1 f = Prelude.foldr1 f . elems
foldl1 f = Prelude.foldl1 f . elems
-- | Monadic fold over the elements of a structure,
-- associating to the right, i.e. from right to left.
foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
foldrM f z0 xs = foldl f' return xs z0
where f' k x z = f x z >>= k
-- | Monadic fold over the elements of a structure,
-- associating to the left, i.e. from left to right.
foldlM :: (Foldable t, Monad m) => (a -> b -> m a) -> a -> t b -> m a
foldlM f z0 xs = foldr f' return xs z0
where f' x k z = f z x >>= k
-- | Map each element of a structure to an action, evaluate
-- these actions from left to right, and ignore the results.
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
traverse_ f = foldr ((*>) . f) (pure ())
-- | Map each element of a structure to a monadic action, evaluate
-- these actions from left to right, and ignore the results.
mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
mapM_ f = foldr ((>>) . f) (return ())
Es heißt auch f in Clojure :
(def
^{:arglists '([f coll] [f val coll])
:doc "f should be a function of 2 arguments. If val is not supplied,
returns the result of applying f to the first 2 items in coll, then
applying f to that result and the 3rd item, etc. If coll contains no
items, f must accept no arguments as well, and reduce returns the
result of calling f with no arguments. If coll has only 1 item, it
is returned and f is not called. If val is supplied, returns the
result of applying f to val and the first item in coll, then
applying f to that result and the 2nd item, etc. If coll contains no
items, returns val and f is not called."
:added "1.0"}
reduce
(fn r
([f coll]
(let [s (seq coll)]
(if s
(r f (first s) (next s))
(f))))
([f val coll]
(let [s (seq coll)]
(if s
(if (chunked-seq? s)
(recur f
(.reduce (chunk-first s) f val)
(chunk-next s))
(recur f (f val (first s)) (next s)))
val)))))