Antworten:
Prüfen Sie, ob das Abfrageprotokoll und das Protokoll für langsame Abfragen aktiviert sind .
Wenn in Ihrer Produktions- / Testumgebung die Abfrageprotokollierung aktiviert ist (was jedoch nicht erforderlich ist), können Sie mk-query-digest aus dem maatkit- Toolkit verwenden. es wird Ihnen helfen zu bestimmen, welche Anfragen am häufigsten / am längsten dauern usw.
Eine weitere kommerzielle Option ist der MySQL Query Analyzer, der Teil des MySQL Enterprise Monitor ist. Ich habe festgestellt, dass es einigermaßen hilfreich ist, wenn es darum geht, Oddball-Abfragen zu analysieren, um Möglichkeiten zur Verbesserung ihrer Leistung zu finden.
Sie können auch MySQLTuner ausprobieren
Hier ist ein guter Artikel über den Profiler von MySQL. Schauen Sie sich die EXPLAIN- Anweisung an.
Ich benutze dieses kleine Skript. Es war immer nützlich für mich, obwohl nichts offizielles.
Ich habe mehrere Skripte und andere Tools verwendet, die alle großartig sind, aber ich fand Jet Profiler wirklich gut darin, in Echtzeit zu überwachen und zu visualisieren, was los ist und wie sich die Dinge ändern. Die Vollversion kostet Geld, aber die eingeschränkte kostenlose Version ist auch nützlich und vermittelt Ihnen ein gutes Gefühl dafür, was die Vollversion leisten kann.
Siehe: https://sites.google.com/site/basicsqlmanagment/ Funktioniert bei mir nicht als Proxy-Profiler
Ich kann Folgendes nur empfehlen
Aus der alten MAATKIT-Dokumentation
Column Meaning
============ ==========================================================
Rank The query's rank within the entire set of queries analyzed
Query ID The query's fingerprint
Response time The total response time, and percentage of overall total
Calls The number of times this query was executed
R/Call The mean response time per execution
Apdx The Apdex score; see --apdex-threshold for details
V/M The Variance-to-mean ratio of response time
EXPLAIN If --explain was specified, a sparkline; see --explain
Item The distilled query
Im DBA StackExchange beantwortete ich die allgemeinen Performance-Effekte des Abfrageprotokolls von MySQL . In meinem alten Beitrag habe ich vorgeschlagen, mk-query-digest anstelle des allgemeinen oder langsamen Protokolls zu verwenden. In diesem Beitrag finden Sie eine Beispielausgabe der Abfrageprofilerstellung von mk-query-digest:
# Rank Query ID Response time Calls R/Call Item
# ==== ================== ================ ======= ========== ====
# 1 0x812D15015AD29D33 336.3867 68.5% 910 0.369656 SELECT mt_entry mt_placement mt_category
# 2 0x99E13015BFF1E75E 25.3594 5.2% 210 0.120759 SELECT mt_entry mt_objecttag
# 3 0x5E994008E9543B29 16.1608 3.3% 46 0.351321 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
# 4 0x84DD09F0FC444677 13.3070 2.7% 23 0.578567 SELECT mt_entry
# 5 0x377E0D0898266FDD 12.0870 2.5% 116 0.104199 SELECT polls_pollquestion mt_category
# 6 0x440EBDBCEDB88725 11.5159 2.3% 21 0.548376 SELECT mt_entry
# 7 0x1DC2DFD6B658021F 10.3653 2.1% 54 0.191949 SELECT mt_entry mt_placement mt_category
# 8 0x6C6318E56E149036 8.8294 1.8% 44 0.200667 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
# 9 0x392F6DA628C7FEBD 8.5243 1.7% 9 0.947143 SELECT mt_entry mt_objecttag
# 10 0x7DD2B294CFF96961 7.3753 1.5% 70 0.105362 SELECT polls_pollresponse
# 11 0x9B9092194D3910E6 5.8124 1.2% 57 0.101973 SELECT content_specialitem content_basecontentitem advertising_product organizations_neworg content_basecontentitem_item_attributes
# 12 0xA909BF76E7051792 5.6005 1.1% 55 0.101828 SELECT mt_entry mt_objecttag mt_tag
# 13 0xEBE07AC48DB8923E 5.5195 1.1% 54 0.102213 SELECT rssfeeds_contentfeeditem
# 14 0x3E52CF0261A7C3FF 4.4676 0.9% 44 0.101536 SELECT schedule_occurrence schedule_occurrence.start
# 15 0x9D0BCD3F6731195B 4.2804 0.9% 41 0.104401 SELECT mt_entry mt_placement mt_category
# 16 0x7961BD4C76277EB7 4.0143 0.8% 18 0.223014 INSERT UNION UPDATE UNION mt_session
# 17 0xD2F486BA41E7A623 3.1448 0.6% 21 0.149754 SELECT mt_entry mt_placement mt_category mt_objecttag mt_tag
# 18 0x3B9686D98BB8E054 2.9577 0.6% 11 0.268885 SELECT mt_entry mt_objecttag mt_tag
# 19 0xBB2443BF48638319 2.7239 0.6% 9 0.302660 SELECT rssfeeds_contentfeeditem
# 20 0x3D533D57D8B466CC 2.4209 0.5% 15 0.161391 SELECT mt_entry mt_placement mt_category
Über dieser Ausgabe befinden sich Histogramme dieser 20 Abfragen mit der höchsten Schlechtleistung
Beispiel für das Histogramm des ersten Eintrags
# Query 1: 0.77 QPS, 0.28x concurrency, ID 0x812D15015AD29D33 at byte 0 __
# This item is included in the report because it matches --limit.
# pct total min max avg 95% stddev median
# Count 36 910
# Exec time 58 336s 101ms 2s 370ms 992ms 230ms 393ms
# Lock time 0 0 0 0 0 0 0 0
# Users 1 mt
# Hosts 905 10.64.95.74:54707 (2), 10.64.95.74:56133 (2), 10.64.95.80:33862 (2)... 901 more
# Databases 1 mt1
# Time range 1321642802 to 1321643988
# bytes 1 1.11M 1.22k 1.41k 1.25k 1.26k 25.66 1.20k
# id 36 9.87G 11.10M 11.11M 11.11M 10.76M 0.12 10.76M
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms ################################################################
# 1s ###
# 10s+
# Tables
# SHOW TABLE STATUS FROM `mt1` LIKE 'mt_entry'\G
# SHOW CREATE TABLE `mt1`.`mt_entry`\G
# SHOW TABLE STATUS FROM `mt1` LIKE 'mt_placement'\G
# SHOW CREATE TABLE `mt1`.`mt_placement`\G
# SHOW TABLE STATUS FROM `mt1` LIKE 'mt_category'\G
# SHOW CREATE TABLE `mt1`.`mt_category`\G
# EXPLAIN
SELECT `mt_entry`.`entry_id`, `mt_entry`.`entry_allow_comments`, `mt_entry`.`entry_allow_pings`, `mt_entry`.`entry_atom_id`, `mt_entry`.`entry_author_id`, `mt_entry`.`entry_authored_on`, `mt_entry`.`entry_basename`, `mt_entry`.`entry_blog_id`, `mt_entry`.`entry_category_id`, `mt_entry`.`entry_class`, `mt_entry`.`entry_comment_count`, `mt_entry`.`entry_convert_breaks`, `mt_entry`.`entry_created_by`, `mt_entry`.`entry_created_on`, `mt_entry`.`entry_excerpt`, `mt_entry`.`entry_keywords`, `mt_entry`.`entry_modified_by`, `mt_entry`.`entry_modified_on`, `mt_entry`.`entry_ping_count`, `mt_entry`.`entry_pinged_urls`, `mt_entry`.`entry_status`, `mt_entry`.`entry_tangent_cache`, `mt_entry`.`entry_template_id`, `mt_entry`.`entry_text`, `mt_entry`.`entry_text_more`, `mt_entry`.`entry_title`, `mt_entry`.`entry_to_ping_urls`, `mt_entry`.`entry_week_number` FROM `mt_entry` INNER JOIN `mt_placement` ON (`mt_entry`.`entry_id` = `mt_placement`.`placement_entry_id`) INNER JOIN `mt_category` ON (`mt_placement`.`placement_category_id` = `mt_category`.`category_id`) WHERE (`mt_entry`.`entry_status` = 2 AND `mt_category`.`category_basename` IN ('business_review' /*... omitted 3 items ...*/ ) AND NOT (`mt_entry`.`entry_id` IN (53441))) ORDER BY `mt_entry`.`entry_authored_on` DESC LIMIT 4\G