Ich versuche, die Broyden-Fletcher-Goldfarb-Shanno-Methode zu implementieren, um das Minimum einer Funktion zu finden. Ich brauche zwei anfängliche Vermutungen & und eine anfängliche hessische Matrixnäherung . Die einzigen Anforderungen, die ich für finde, sind, dass wenn der Hessische symmetrisch positiv definit ist, auch . Wenn ich auf Wikipedia schaue, sehe ich, dass eine typische anfängliche Annäherung (die Identitätsmatrix) ist. Ist das immer eine gute Initiale ? Gibt es einen Grund, warum ich etwas anderes als wählen möchte ? Würden andere Entscheidungen von B, die dieselben Matrixeigenschaften erfüllen, die Konvergenz der Methode stark beeinflussen? x 0 B 0 B 0 B 0 B 0 = I B 0 I.