Unterdrücken Sie die wissenschaftliche Notation in Numpy, wenn Sie ein Array aus einer verschachtelten Liste erstellen


159

Ich habe eine verschachtelte Python-Liste, die wie folgt aussieht:

my_list = [[3.74, 5162, 13683628846.64, 12783387559.86, 1.81],
 [9.55, 116, 189688622.37, 260332262.0, 1.97],
 [2.2, 768, 6004865.13, 5759960.98, 1.21],
 [3.74, 4062, 3263822121.39, 3066869087.9, 1.93],
 [1.91, 474, 44555062.72, 44555062.72, 0.41],
 [5.8, 5006, 8254968918.1, 7446788272.74, 3.25],
 [4.5, 7887, 30078971595.46, 27814989471.31, 2.18],
 [7.03, 116, 66252511.46, 81109291.0, 1.56],
 [6.52, 116, 47674230.76, 57686991.0, 1.43],
 [1.85, 623, 3002631.96, 2899484.08, 0.64],
 [13.76, 1227, 1737874137.5, 1446511574.32, 4.32],
 [13.76, 1227, 1737874137.5, 1446511574.32, 4.32]]

Ich importiere dann Numpy und setze die Druckoptionen auf (suppress=True). Wenn ich ein Array erstelle:

my_array = numpy.array(my_list)

Ich kann für mein Leben die wissenschaftliche Notation nicht unterdrücken:

[[  3.74000000e+00   5.16200000e+03   1.36836288e+10   1.27833876e+10
    1.81000000e+00]
 [  9.55000000e+00   1.16000000e+02   1.89688622e+08   2.60332262e+08
    1.97000000e+00]
 [  2.20000000e+00   7.68000000e+02   6.00486513e+06   5.75996098e+06
    1.21000000e+00]
 [  3.74000000e+00   4.06200000e+03   3.26382212e+09   3.06686909e+09
    1.93000000e+00]
 [  1.91000000e+00   4.74000000e+02   4.45550627e+07   4.45550627e+07
    4.10000000e-01]
 [  5.80000000e+00   5.00600000e+03   8.25496892e+09   7.44678827e+09
    3.25000000e+00]
 [  4.50000000e+00   7.88700000e+03   3.00789716e+10   2.78149895e+10
    2.18000000e+00]
 [  7.03000000e+00   1.16000000e+02   6.62525115e+07   8.11092910e+07
    1.56000000e+00]
 [  6.52000000e+00   1.16000000e+02   4.76742308e+07   5.76869910e+07
    1.43000000e+00]
 [  1.85000000e+00   6.23000000e+02   3.00263196e+06   2.89948408e+06
    6.40000000e-01]
 [  1.37600000e+01   1.22700000e+03   1.73787414e+09   1.44651157e+09
    4.32000000e+00]
 [  1.37600000e+01   1.22700000e+03   1.73787414e+09   1.44651157e+09
    4.32000000e+00]]

Wenn ich ein einfaches Numpy-Array direkt erstelle:

new_array = numpy.array([1.5, 4.65, 7.845])

Ich habe kein Problem und es wird wie folgt gedruckt:

[ 1.5    4.65   7.845]

Weiß jemand, was mein Problem ist?


2
numpy.set_printoptionssteuert, wie numpy Arrays gedruckt werden. Es gibt jedoch keine Möglichkeit, die wissenschaftliche Notation vollständig zu unterdrücken. Es wird umgeschaltet, weil Sie Werte zwischen 1e-2 und 1e9 haben. Wenn Sie einen kleineren Bereich haben, wird keine wissenschaftliche Notation verwendet, um diese anzuzeigen. Warum ist es jedoch wichtig, wie sie angezeigt printwerden? Wenn Sie versuchen, es zu speichern, verwenden savetxt, etc.
Joe Kington

2
Nicht wirklich das, was Sie fragen, aber mit numpy.round (auch mit hoher Präzision) konnte ich die wissenschaftliche Notation entfernen, die wie 7.00000000e + 00 in einer SVD-Rekonstruktionsmatrix aussah. Aufgrund der wissenschaftlichen Notation (?) Würde es vorher keine Gleichheit behaupten. Ich erwähne es, weil np.set_printoptions (unterdrücken = True) nicht funktioniert hat, um dieses Problem für mich zu beheben.
BrechtDeMan

Antworten:


260

Ich denke, was Sie brauchen np.set_printoptions(suppress=True), finden Sie hier: http://pythonquirks.blogspot.fr/2009/10/controlling-printing-in-numpy.html

Eine Dokumentation zu SciPy.org numpy, die alle Funktionsparameter enthält (Unterdrückung wird im obigen Link nicht detailliert beschrieben), finden Sie hier: https://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html


7
Können Sie zumindest eine Zusammenfassung dessen geben, was es tut?
Charlie Parker

4
In meinem Fall wird immer noch die wissenschaftliche Notation verwendet
lesolorzanov

2
@ZloySmiertniy, benutze den Formatierer wie in Erics Antwort unten. Ich benutzte np.set_printoptions(formatter={'all':lambda x: str(x)})
nurp

36

Python Unterdrückt alle exponentiellen Notationen beim Drucken von Numpy-Ndarrays, beim Ausrichten von Wrangle-Text, beim Runden und beim Drucken:

Was folgt, ist eine Erklärung für das, was gerade passiert. Scrollen Sie nach unten, um Code-Demos zu erhalten.

Das Übergeben des Parameters suppress=Truean die Funktion set_printoptionsfunktioniert nur für Zahlen, die in den ihm zugewiesenen Standardbereich von 8 Zeichen passen, wie folgt:

import numpy as np
np.set_printoptions(suppress=True) #prevent numpy exponential 
                                   #notation on print, default False

#            tiny     med  large
a = np.array([1.01e-5, 22, 1.2345678e7])  #notice how index 2 is 8 
                                          #digits wide

print(a)    #prints [ 0.0000101   22.     12345678. ]

Wenn Sie jedoch eine Zahl mit einer Breite von mehr als 8 Zeichen eingeben, wird die Exponentialnotation erneut wie folgt festgelegt:

np.set_printoptions(suppress=True)

a = np.array([1.01e-5, 22, 1.2345678e10])    #notice how index 2 is 10
                                             #digits wide, too wide!

#exponential notation where we've told it not to!
print(a)    #prints [1.01000000e-005   2.20000000e+001   1.23456780e+10]

numpy hat die Wahl, ob Sie Ihre Zahl halbieren, um sie falsch darzustellen, oder ob Sie eine exponentielle Notation erzwingen möchten. Sie wählen letztere.

Hier kommt set_printoptions(formatter=...)die Rettung, um Optionen zum Drucken und Runden festzulegen. Sagen Sie set_printoptions, Sie sollen nur einen nackten Schwimmer drucken:

np.set_printoptions(suppress=True,
   formatter={'float_kind':'{:f}'.format})

a = np.array([1.01e-5, 22, 1.2345678e30])  #notice how index 2 is 30
                                           #digits wide.  

#Ok good, no exponential notation in the large numbers:
print(a)  #prints [0.000010 22.000000 1234567799999999979944197226496.000000] 

Wir haben die Exponentialschreibweise zwangsweise unterdrückt, sie ist jedoch nicht gerundet oder gerechtfertigt. Geben Sie daher zusätzliche Formatierungsoptionen an:

np.set_printoptions(suppress=True,
   formatter={'float_kind':'{:0.2f}'.format})  #float, 2 units 
                                               #precision right, 0 on left

a = np.array([1.01e-5, 22, 1.2345678e30])   #notice how index 2 is 30
                                            #digits wide

print(a)  #prints [0.00 22.00 1234567799999999979944197226496.00]

Der Nachteil bei der Kraftunterdrückung aller exponentiellen Vorstellungen in ndarrays besteht darin, dass, wenn Ihr ndarray einen riesigen Float-Wert nahe der Unendlichkeit aufweist und Sie ihn drucken, Sie mit einer Seite voller Zahlen ins Gesicht gesprengt werden.

Vollständiges Beispiel Demo 1:

from pprint import pprint
import numpy as np
#chaotic python list of lists with very different numeric magnitudes
my_list = [[3.74, 5162, 13683628846.64, 12783387559.86, 1.81],
           [9.55, 116, 189688622.37, 260332262.0, 1.97],
           [2.2, 768, 6004865.13, 5759960.98, 1.21],
           [3.74, 4062, 3263822121.39, 3066869087.9, 1.93],
           [1.91, 474, 44555062.72, 44555062.72, 0.41],
           [5.8, 5006, 8254968918.1, 7446788272.74, 3.25],
           [4.5, 7887, 30078971595.46, 27814989471.31, 2.18],
           [7.03, 116, 66252511.46, 81109291.0, 1.56],
           [6.52, 116, 47674230.76, 57686991.0, 1.43],
           [1.85, 623, 3002631.96, 2899484.08, 0.64],
           [13.76, 1227, 1737874137.5, 1446511574.32, 4.32],
           [13.76, 1227, 1737874137.5, 1446511574.32, 4.32]]

#convert python list of lists to numpy ndarray called my_array
my_array = np.array(my_list)

#This is a little recursive helper function converts all nested 
#ndarrays to python list of lists so that pretty printer knows what to do.
def arrayToList(arr):
    if type(arr) == type(np.array):
        #If the passed type is an ndarray then convert it to a list and
        #recursively convert all nested types
        return arrayToList(arr.tolist())
    else:
        #if item isn't an ndarray leave it as is.
        return arr

#suppress exponential notation, define an appropriate float formatter
#specify stdout line width and let pretty print do the work
np.set_printoptions(suppress=True,
   formatter={'float_kind':'{:16.3f}'.format}, linewidth=130)
pprint(arrayToList(my_array))

Drucke:

array([[           3.740,         5162.000,  13683628846.640,  12783387559.860,            1.810],
       [           9.550,          116.000,    189688622.370,    260332262.000,            1.970],
       [           2.200,          768.000,      6004865.130,      5759960.980,            1.210],
       [           3.740,         4062.000,   3263822121.390,   3066869087.900,            1.930],
       [           1.910,          474.000,     44555062.720,     44555062.720,            0.410],
       [           5.800,         5006.000,   8254968918.100,   7446788272.740,            3.250],
       [           4.500,         7887.000,  30078971595.460,  27814989471.310,            2.180],
       [           7.030,          116.000,     66252511.460,     81109291.000,            1.560],
       [           6.520,          116.000,     47674230.760,     57686991.000,            1.430],
       [           1.850,          623.000,      3002631.960,      2899484.080,            0.640],
       [          13.760,         1227.000,   1737874137.500,   1446511574.320,            4.320],
       [          13.760,         1227.000,   1737874137.500,   1446511574.320,            4.320]])

Vollständiges Beispiel Demo 2:

import numpy as np  
#chaotic python list of lists with very different numeric magnitudes 

#            very tiny      medium size            large sized
#            numbers        numbers                numbers

my_list = [[0.000000000074, 5162, 13683628846.64, 1.01e10, 1.81], 
           [1.000000000055,  116, 189688622.37, 260332262.0, 1.97], 
           [0.010000000022,  768, 6004865.13,   -99e13, 1.21], 
           [1.000000000074, 4062, 3263822121.39, 3066869087.9, 1.93], 
           [2.91,            474, 44555062.72, 44555062.72, 0.41], 
           [5,              5006, 8254968918.1, 7446788272.74, 3.25], 
           [0.01,           7887, 30078971595.46, 27814989471.31, 2.18], 
           [7.03,            116, 66252511.46, 81109291.0, 1.56], 
           [6.52,            116, 47674230.76, 57686991.0, 1.43], 
           [1.85,            623, 3002631.96, 2899484.08, 0.64], 
           [13.76,          1227, 1737874137.5, 1446511574.32, 4.32], 
           [13.76,          1337, 1737874137.5, 1446511574.32, 4.32]] 
import sys 
#convert python list of lists to numpy ndarray called my_array 
my_array = np.array(my_list) 
#following two lines do the same thing, showing that np.savetxt can 
#correctly handle python lists of lists and numpy 2D ndarrays. 
np.savetxt(sys.stdout, my_list, '%19.2f') 
np.savetxt(sys.stdout, my_array, '%19.2f') 

Drucke:

 0.00             5162.00      13683628846.64      10100000000.00              1.81
 1.00              116.00        189688622.37        260332262.00              1.97
 0.01              768.00          6004865.13 -990000000000000.00              1.21
 1.00             4062.00       3263822121.39       3066869087.90              1.93
 2.91              474.00         44555062.72         44555062.72              0.41
 5.00             5006.00       8254968918.10       7446788272.74              3.25
 0.01             7887.00      30078971595.46      27814989471.31              2.18
 7.03              116.00         66252511.46         81109291.00              1.56
 6.52              116.00         47674230.76         57686991.00              1.43
 1.85              623.00          3002631.96          2899484.08              0.64
13.76             1227.00       1737874137.50       1446511574.32              4.32
13.76             1337.00       1737874137.50       1446511574.32              4.32
 0.00             5162.00      13683628846.64      10100000000.00              1.81
 1.00              116.00        189688622.37        260332262.00              1.97
 0.01              768.00          6004865.13 -990000000000000.00              1.21
 1.00             4062.00       3263822121.39       3066869087.90              1.93
 2.91              474.00         44555062.72         44555062.72              0.41
 5.00             5006.00       8254968918.10       7446788272.74              3.25
 0.01             7887.00      30078971595.46      27814989471.31              2.18
 7.03              116.00         66252511.46         81109291.00              1.56
 6.52              116.00         47674230.76         57686991.00              1.43
 1.85              623.00          3002631.96          2899484.08              0.64
13.76             1227.00       1737874137.50       1446511574.32              4.32
13.76             1337.00       1737874137.50       1446511574.32              4.32

Beachten Sie, dass die Rundung mit einer Genauigkeit von 2 Einheiten konsistent ist und die Exponentialschreibweise sowohl im sehr großen e+xals auch im sehr kleinen e-xBereich unterdrückt wird .


22

Für 1D- und 2D-Arrays können Sie np.savetxt verwenden, um mit einer bestimmten Formatzeichenfolge zu drucken:

>>> import sys
>>> x = numpy.arange(20).reshape((4,5))
>>> numpy.savetxt(sys.stdout, x, '%5.2f')
 0.00  1.00  2.00  3.00  4.00
 5.00  6.00  7.00  8.00  9.00
10.00 11.00 12.00 13.00 14.00
15.00 16.00 17.00 18.00 19.00

Ihre Optionen mit numpy.set_printoptions oder numpy.array2string in Version 1.3 sind ziemlich klobig und begrenzt (zum Beispiel keine Möglichkeit, die wissenschaftliche Notation für große Zahlen zu unterdrücken). Es sieht so aus, als würde sich dies mit zukünftigen Versionen ändern, mit numpy.set_printoptions (formatter = ..) und numpy.array2string (style = ..).


0

Sie könnten eine Funktion schreiben, die eine wissenschaftliche Notation in eine reguläre umwandelt, so etwas wie

def sc2std(x):
    s = str(x)
    if 'e' in s:
        num,ex = s.split('e')
        if '-' in num:
            negprefix = '-'
        else:
            negprefix = ''
        num = num.replace('-','')
        if '.' in num:
            dotlocation = num.index('.')
        else:
            dotlocation = len(num)
        newdotlocation = dotlocation + int(ex)
        num = num.replace('.','')
        if (newdotlocation < 1):
            return negprefix+'0.'+'0'*(-newdotlocation)+num
        if (newdotlocation > len(num)):
            return negprefix+ num + '0'*(newdotlocation - len(num))+'.0'
        return negprefix + num[:newdotlocation] + '.' + num[newdotlocation:]
    else:
        return s
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.