Weitere Informationen zu einer flexibleren und schnelleren Vorgehensweise bei der Datenaggregation finden Sie in der collap
Funktion im auf CRAN verfügbaren Collapse R-Paket:
library(collapse)
# Simple aggregation with one function
head(collap(df1, x1 + x2 ~ year + month, fmean))
year month x1 x2
1 2000 1 -1.217984 4.008534
2 2000 2 -1.117777 11.460301
3 2000 3 5.552706 8.621904
4 2000 4 4.238889 22.382953
5 2000 5 3.124566 39.982799
6 2000 6 -1.415203 48.252283
# Customized: Aggregate columns with different functions
head(collap(df1, x1 + x2 ~ year + month,
custom = list(fmean = c("x1", "x2"), fmedian = "x2")))
year month fmean.x1 fmean.x2 fmedian.x2
1 2000 1 -1.217984 4.008534 3.266968
2 2000 2 -1.117777 11.460301 11.563387
3 2000 3 5.552706 8.621904 8.506329
4 2000 4 4.238889 22.382953 20.796205
5 2000 5 3.124566 39.982799 39.919145
6 2000 6 -1.415203 48.252283 48.653926
# You can also apply multiple functions to all columns
head(collap(df1, x1 + x2 ~ year + month, list(fmean, fmin, fmax)))
year month fmean.x1 fmin.x1 fmax.x1 fmean.x2 fmin.x2 fmax.x2
1 2000 1 -1.217984 -4.2460775 1.245649 4.008534 -1.720181 10.47825
2 2000 2 -1.117777 -5.0081858 3.330872 11.460301 9.111287 13.86184
3 2000 3 5.552706 0.1193369 9.464760 8.621904 6.807443 11.54485
4 2000 4 4.238889 0.8723805 8.627637 22.382953 11.515753 31.66365
5 2000 5 3.124566 -1.5985090 7.341478 39.982799 31.957653 46.13732
6 2000 6 -1.415203 -4.6072295 2.655084 48.252283 42.809211 52.31309
# When you do that, you can also return the data in a long format
head(collap(df1, x1 + x2 ~ year + month, list(fmean, fmin, fmax), return = "long"))
Function year month x1 x2
1 fmean 2000 1 -1.217984 4.008534
2 fmean 2000 2 -1.117777 11.460301
3 fmean 2000 3 5.552706 8.621904
4 fmean 2000 4 4.238889 22.382953
5 fmean 2000 5 3.124566 39.982799
6 fmean 2000 6 -1.415203 48.252283
Hinweis : Sie können Basisfunktionen wie mean, max
usw. mit verwenden collap
, aber fmean, fmax
usw. sind C ++ - basierte gruppierte Funktionen, die im Collapse- Paket angeboten werden und erheblich schneller sind (dh die Leistung bei großen Datenaggregationen entspricht der von data.table und bietet gleichzeitig mehr Flexibilität und) Diese schnell gruppierten Funktionen können auch ohne verwendet werdencollap
.
Hinweis 2 : collap
Unterstützt auch die flexible Multitype-Datenaggregation, die Sie natürlich mit dem custom
Argument durchführen können, aber Sie können Funktionen auch halbautomatisch auf numerische und nicht numerische Spalten anwenden:
# wlddev is a data set of World Bank Indicators provided in the collapse package
head(wlddev)
country iso3c date year decade region income OECD PCGDP LIFEEX GINI ODA
1 Afghanistan AFG 1961-01-01 1960 1960 South Asia Low income FALSE NA 32.292 NA 114440000
2 Afghanistan AFG 1962-01-01 1961 1960 South Asia Low income FALSE NA 32.742 NA 233350000
3 Afghanistan AFG 1963-01-01 1962 1960 South Asia Low income FALSE NA 33.185 NA 114880000
4 Afghanistan AFG 1964-01-01 1963 1960 South Asia Low income FALSE NA 33.624 NA 236450000
5 Afghanistan AFG 1965-01-01 1964 1960 South Asia Low income FALSE NA 34.060 NA 302480000
6 Afghanistan AFG 1966-01-01 1965 1960 South Asia Low income FALSE NA 34.495 NA 370250000
# This aggregates the data, applying the mean to numeric and the statistical mode to categorical columns
head(collap(wlddev, ~ iso3c + decade, FUN = fmean, catFUN = fmode))
country iso3c date year decade region income OECD PCGDP LIFEEX GINI ODA
1 Aruba ABW 1961-01-01 1962.5 1960 Latin America & Caribbean High income FALSE NA 66.58583 NA NA
2 Aruba ABW 1967-01-01 1970.0 1970 Latin America & Caribbean High income FALSE NA 69.14178 NA NA
3 Aruba ABW 1976-01-01 1980.0 1980 Latin America & Caribbean High income FALSE NA 72.17600 NA 33630000
4 Aruba ABW 1987-01-01 1990.0 1990 Latin America & Caribbean High income FALSE 23677.09 73.45356 NA 41563333
5 Aruba ABW 1996-01-01 2000.0 2000 Latin America & Caribbean High income FALSE 26766.93 73.85773 NA 19857000
6 Aruba ABW 2007-01-01 2010.0 2010 Latin America & Caribbean High income FALSE 25238.80 75.01078 NA NA
# Note that by default (argument keep.col.order = TRUE) the column order is also preserved
recast
Funktion (auch vonreshape2
) integriert diemelt
unddcast
Funktion auf einmal für Aufgaben wie diese:recast(df1, year + month ~ variable, sum, id.var = c("date", "year", "month"))