unique () für mehr als eine Variable


77

Ich habe den folgenden Datenrahmen in R:

> str(df)
'data.frame':   545227 obs. of  15 variables:
 $ ykod : int  93 93 93 93 93 93 93 93 93 93 ...
 $ yad  : Factor w/ 42 levels "BAKUGAN","BARBIE",..: 30 30 30 30 30 30 30 30 30 30 ...
 $ per  : Factor w/ 3 levels "2 AYLIK","3 AYLIK",..: 3 3 3 3 3 3 3 3 3 3 ...
 $ donem: int  201101 201101 201101 201101 201101 201101 201101 201101 201101 201101 ...
 $ sayi : int  201101 201101 201101 201101 201101 201101 201101 201101 201101 201101 ...
 $ mkod : int  4 5 9 11 12 18 20 22 25 26 ...
 $ mad  : Factor w/ 10464 levels "   Defne Market          ",..: 405 8075 9710 10145 9297 7973 2542 3892 2759 5769 ...
 $ mtip : Factor w/ 29 levels "Abone Bürosu                                      ",..: 2 20 20 2 2 2 2 2 2 2 ...
 $ kanal: Factor w/ 2 levels "OB","SS": 2 2 2 2 2 2 2 2 2 2 ...
 $ bkod : int  110565 110565 110565 110565 110565 110565 110565 110565 110565 110565 ...
 $ bad  : Factor w/ 212 levels "4. Levent","500 Evler",..: 167 167 167 167 167 167 167 167 167 167 ...
 $ bolge: Factor w/ 12 levels "Adana Şehiriçi",..: 7 7 7 7 7 7 7 7 7 7 ...
 $ sevk : int  2 3 3 3 2 2 2 6 2 2 ...
 $ iade : int  2 1 0 2 0 2 1 0 0 2 ...
 $ satis: int  0 2 3 1 2 0 1 6 2 0 ...

Ich möchte eindeutige Werte (wie DISTINCT von SQL) für ausgewählte mehrere Variablen auflisten. Zum Beispiel unique(yad)gibt mir die Namen von jeweils 42 Elementen, aber ich muss zwei Spalten extrahieren ( yadund perzusammen mit allen eindeutigen Kombinationen):

yad           per
---           ---
BARBIE        AYLIK
BAKUGAN       2 AYLIK
MICKEY MOUSE  2 AYLIK
TINKERBELL    3 AYLIK
...           ...

Wie kann ich das erreichen?

Antworten:


132

Wie wäre es mit sich unique()selbst?

df <- data.frame(yad = c("BARBIE", "BARBIE", "BAKUGAN", "BAKUGAN"),
                 per = c("AYLIK",  "AYLIK",  "2 AYLIK", "2 AYLIK"),
                 hmm = 1:4)

df
#       yad     per hmm
# 1  BARBIE   AYLIK   1
# 2  BARBIE   AYLIK   2
# 3 BAKUGAN 2 AYLIK   3
# 4 BAKUGAN 2 AYLIK   4

unique(df[c("yad", "per")])
#       yad     per
# 1  BARBIE   AYLIK
# 3 BAKUGAN 2 AYLIK

2
+1 Würde auch empfehlen, Zeichenfolgen zu normalisieren (tolower, gsub out Sonderzeichen usw.).
Brandon Bertelsen

Wie geht das, wenn dfes sich um eine Matrix handelt? Soll ich es transformieren data.frameoder gibt es eine Funktion, um es zu tun?
Sop

2
Eigentlich habe ich festgestellt, unique.matrix()dass die Arbeit erledigt ist, trotzdem danke
sop

Was ist, wenn Sie alle anderen Variablen behalten möchten (um zu wissen, welche Zeile Sie ausgewählt haben, oder um diese Zeile (möglicherweise die erste) zu verwenden)? Dh gibt es ein Basis-R-Äquivalent für dplyr :: unique (.data, ..., .keep_all = TRUE)?
Corrado

6
Ich weiß es nicht dplyr::distinct(), aber wenn Sie möchten, dass die gesamte Zeile das erste Auftreten einer Kombination enthält, schauen Sie sich das an duplicated(). Hier könnten Sie tun : df[!duplicated(df[1:2]),].
Josh O'Brien

13

Dies ist eine Ergänzung zu Joshs Antwort.

Sie können auch die Werte anderer Variablen beibehalten, während Sie doppelte Zeilen in data.table herausfiltern

Beispiel:

library(data.table)

#create data table
dt <- data.table(
  V1=LETTERS[c(1,1,1,1,2,3,3,5,7,1)],
  V2=LETTERS[c(2,3,4,2,1,4,4,6,7,2)],
  V3=c(1),
  V4=c(2) )

> dt
# V1 V2 V3 V4
# A  B  1  2
# A  C  1  2
# A  D  1  2
# A  B  1  2
# B  A  1  2
# C  D  1  2
# C  D  1  2
# E  F  1  2
# G  G  1  2
# A  B  1  2

# set the key to all columns
setkey(dt)

# Get Unique lines in the data table
unique( dt[list(V1, V2), nomatch = 0] ) 

# V1 V2 V3 V4
# A  B  1  2
# A  C  1  2
# A  D  1  2
# B  A  1  2
# C  D  1  2
# E  F  1  2
# G  G  1  2

Warnung: Wenn die anderen Variablen unterschiedliche Wertekombinationen enthalten, ist Ihr Ergebnis

einzigartige Kombination von V1 und V2


Seltsamerweise funktioniert die eindeutige Operation, aber im Ergebnis dt sind alle anderen Spalten auf NA gesetzt. Weißt du, warum?
Herman Toothrot

Danke, dass du das entdeckt hast. Diese Operation führt eine Zusammenführung durch und kann so einige NAWerte generieren . Die Lösung wäre zu ersetzen allow.cartesian=TRUEmit nomatch = 0, was ignorieren würde NAWerte in den Ergebnissen. Ich habe die Antwort aktualisiert. Danke
rafa.pereira

5

Es gibt verschiedene Möglichkeiten, um alle eindeutigen Kombinationen einer Reihe von Faktoren zu erhalten.

with(df, interaction(yad, per, drop=TRUE))   # gives labels
with(df, yad:per)                            # ditto

aggregate(numeric(nrow(df)), df[c("yad", "per")], length)    # gives a data frame

0

Diese dplyrMethode funktioniert gut beim Verrohren.

Für ausgewählte Spalten :

library(dplyr)
iris %>% 
  select(Sepal.Width, Species) %>% 
  t %>% c %>% unique

 [1] "3.5"        "setosa"     "3.0"        "3.2"        "3.1"       
 [6] "3.6"        "3.9"        "3.4"        "2.9"        "3.7"       
[11] "4.0"        "4.4"        "3.8"        "3.3"        "4.1"       
[16] "4.2"        "2.3"        "versicolor" "2.8"        "2.4"       
[21] "2.7"        "2.0"        "2.2"        "2.5"        "2.6"       
[26] "virginica" 

Oder für den gesamten Datenrahmen :

iris %>% t %>% c %>% unique 

 [1] "5.1"        "3.5"        "1.4"        "0.2"        "setosa"     "4.9"       
 [7] "3.0"        "4.7"        "3.2"        "1.3"        "4.6"        "3.1"       
[13] "1.5"        "5.0"        "3.6"        "5.4"        "3.9"        "1.7"       
[19] "0.4"        "3.4"        "0.3"        "4.4"        "2.9"        "0.1"       
[25] "3.7"        "4.8"        "1.6"        "4.3"        "1.1"        "5.8"       
[31] "4.0"        "1.2"        "5.7"        "3.8"        "1.0"        "3.3"       
[37] "0.5"        "1.9"        "5.2"        "4.1"        "5.5"        "4.2"       
[43] "4.5"        "2.3"        "0.6"        "5.3"        "7.0"        "versicolor"
[49] "6.4"        "6.9"        "6.5"        "2.8"        "6.3"        "2.4"       
[55] "6.6"        "2.7"        "2.0"        "5.9"        "6.0"        "2.2"       
[61] "6.1"        "5.6"        "6.7"        "6.2"        "2.5"        "1.8"       
[67] "6.8"        "2.6"        "virginica"  "7.1"        "2.1"        "7.6"       
[73] "7.3"        "7.2"        "7.7"        "7.4"        "7.9" 
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.