Unter Verwendung der Klassendeklarationen in Owens Beitrag finden Sie hier ein überarbeitetes Timing mit einigen Auswirkungen des Finalisierens.
Kurz gesagt, ich finde Klasse C, um eine Implementierung bereitzustellen, die über 60x schneller ist als die Methode im ursprünglichen Beitrag. (Entschuldigung für die Textwand)
Die Datei, die ich verwendet habe:
import cProfile
import numpy as np
def test_class(f):
x = f()
for i in xrange(100000):
x.update([i])
for i in xrange(1000):
x.finalize()
for x in 'ABC':
cProfile.run('test_class(%s)' % x)
Nun die resultierenden Timings:
EIN:
903005 function calls in 16.049 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 16.049 16.049 <string>:1(<module>)
100000 0.139 0.000 1.888 0.000 fromnumeric.py:1043(ravel)
1000 0.001 0.000 0.003 0.000 fromnumeric.py:107(reshape)
100000 0.322 0.000 14.424 0.000 function_base.py:3466(append)
100000 0.102 0.000 1.623 0.000 numeric.py:216(asarray)
100000 0.121 0.000 0.298 0.000 numeric.py:286(asanyarray)
1000 0.002 0.000 0.004 0.000 test.py:12(finalize)
1 0.146 0.146 16.049 16.049 test.py:50(test_class)
1 0.000 0.000 0.000 0.000 test.py:6(__init__)
100000 1.475 0.000 15.899 0.000 test.py:9(update)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
100000 0.126 0.000 0.126 0.000 {method 'ravel' of 'numpy.ndarray' objects}
1000 0.002 0.000 0.002 0.000 {method 'reshape' of 'numpy.ndarray' objects}
200001 1.698 0.000 1.698 0.000 {numpy.core.multiarray.array}
100000 11.915 0.000 11.915 0.000 {numpy.core.multiarray.concatenate}
B:
208004 function calls in 16.885 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 16.885 16.885 <string>:1(<module>)
1000 0.025 0.000 16.508 0.017 fromnumeric.py:107(reshape)
1000 0.013 0.000 16.483 0.016 fromnumeric.py:32(_wrapit)
1000 0.007 0.000 16.445 0.016 numeric.py:216(asarray)
1 0.000 0.000 0.000 0.000 test.py:16(__init__)
100000 0.068 0.000 0.080 0.000 test.py:19(update)
1000 0.012 0.000 16.520 0.017 test.py:23(finalize)
1 0.284 0.284 16.883 16.883 test.py:50(test_class)
1000 0.005 0.000 0.005 0.000 {getattr}
1000 0.001 0.000 0.001 0.000 {len}
100000 0.012 0.000 0.012 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1000 0.020 0.000 0.020 0.000 {method 'reshape' of 'numpy.ndarray' objects}
1000 16.438 0.016 16.438 0.016 {numpy.core.multiarray.array}
C:
204010 function calls in 0.244 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.244 0.244 <string>:1(<module>)
1000 0.001 0.000 0.003 0.000 fromnumeric.py:107(reshape)
1 0.000 0.000 0.000 0.000 test.py:27(__init__)
100000 0.082 0.000 0.170 0.000 test.py:32(update)
100000 0.087 0.000 0.088 0.000 test.py:36(add)
1000 0.002 0.000 0.005 0.000 test.py:46(finalize)
1 0.068 0.068 0.243 0.243 test.py:50(test_class)
1000 0.000 0.000 0.000 0.000 {len}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1000 0.002 0.000 0.002 0.000 {method 'reshape' of 'numpy.ndarray' objects}
6 0.001 0.000 0.001 0.000 {numpy.core.multiarray.zeros}
Klasse A wird durch die Aktualisierungen zerstört, Klasse B wird durch die Finalisierungen zerstört. Klasse C ist gegenüber beiden robust.