Antworten:
Verwenden set
Sie diese Option, wenn Sie sich nicht für die Reihenfolge oder Wiederholung von Artikeln interessieren. Verwenden Sie Listenverständnisse, wenn Sie Folgendes tun:
>>> def diff(first, second):
second = set(second)
return [item for item in first if item not in second]
>>> diff(A, B)
[1, 3, 4]
>>> diff(B, A)
[5]
>>>
set
auf B ist harmlos, das Anwenden auf A
und Verwenden des Ergebnisses anstelle des Originals A
jedoch nicht.
Wenn die Reihenfolge keine Rolle spielt, können Sie einfach die eingestellte Differenz berechnen:
>>> set([1,2,3,4]) - set([2,5])
set([1, 4, 3])
>>> set([2,5]) - set([1,2,3,4])
set([5])
Sie können eine tun
list(set(A)-set(B))
und
list(set(B)-set(A))
Einzeiler:
diff = lambda l1,l2: [x for x in l1 if x not in l2]
diff(A,B)
diff(B,A)
Oder:
diff = lambda l1,l2: filter(lambda x: x not in l2, l1)
diff(A,B)
diff(B,A)
Die obigen Beispiele trivialisierten das Problem der Berechnung von Differenzen. Angenommen, das Sortieren oder Deduplizieren erleichtert die Berechnung des Unterschieds auf jeden Fall. Wenn sich Ihr Vergleich diese Annahmen jedoch nicht leisten kann, benötigen Sie eine nicht triviale Implementierung eines Diff-Algorithmus. Siehe difflib in der Python-Standardbibliothek.
from difflib import SequenceMatcher
squeeze=SequenceMatcher( None, A, B )
print "A - B = [%s]"%( reduce( lambda p,q: p+q,
map( lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes() ) ) ) )
A - B = [[1, 3, 4]]
print
es von einem Befehl zu einer Funktion geändert reduce
wurde filter
und map
als unpythonisch deklariert wurde. (Und ich denke, Guido kann Recht haben - ich verstehe auch nicht, was reduce
tut.)
Python 2.7.3 (Standard, 27. Februar 2014, 19:58:35) - IPython 1.1.0 - timeit: (github gist)
def diff(a, b):
b = set(b)
return [aa for aa in a if aa not in b]
def set_diff(a, b):
return list(set(a) - set(b))
diff_lamb_hension = lambda l1,l2: [x for x in l1 if x not in l2]
diff_lamb_filter = lambda l1,l2: filter(lambda x: x not in l2, l1)
from difflib import SequenceMatcher
def squeezer(a, b):
squeeze = SequenceMatcher(None, a, b)
return reduce(lambda p,q: p+q, map(
lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes())))
Ergebnisse:
# Small
a = range(10)
b = range(10/2)
timeit[diff(a, b)]
100000 loops, best of 3: 1.97 µs per loop
timeit[set_diff(a, b)]
100000 loops, best of 3: 2.71 µs per loop
timeit[diff_lamb_hension(a, b)]
100000 loops, best of 3: 2.1 µs per loop
timeit[diff_lamb_filter(a, b)]
100000 loops, best of 3: 3.58 µs per loop
timeit[squeezer(a, b)]
10000 loops, best of 3: 36 µs per loop
# Medium
a = range(10**4)
b = range(10**4/2)
timeit[diff(a, b)]
1000 loops, best of 3: 1.17 ms per loop
timeit[set_diff(a, b)]
1000 loops, best of 3: 1.27 ms per loop
timeit[diff_lamb_hension(a, b)]
1 loops, best of 3: 736 ms per loop
timeit[diff_lamb_filter(a, b)]
1 loops, best of 3: 732 ms per loop
timeit[squeezer(a, b)]
100 loops, best of 3: 12.8 ms per loop
# Big
a = xrange(10**7)
b = xrange(10**7/2)
timeit[diff(a, b)]
1 loops, best of 3: 1.74 s per loop
timeit[set_diff(a, b)]
1 loops, best of 3: 2.57 s per loop
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# TypeError: sequence index must be integer, not 'slice'
@ roman-bodnarchuk Listenverständnis Funktion def diff (a, b) scheint schneller zu sein.
A = [1,2,3,4]
B = [2,5]
#A - B
x = list(set(A) - set(B))
#B - A
y = list(set(B) - set(A))
print x
print y
Sie möchten a set
anstelle von a verwenden list
.
Für den Fall, dass der Unterschied rekursiv tief in Elemente Ihrer Liste einfließen soll, habe ich ein Paket für Python geschrieben: https://github.com/erasmose/deepdiff
Von PyPi installieren:
pip install deepdiff
Wenn Sie Python3 sind, müssen Sie auch Folgendes installieren:
pip install future six
>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> from __future__ import print_function
Das gleiche Objekt wird leer zurückgegeben
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = t1
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{}
Der Typ eines Elements hat sich geändert
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:"2", 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'type_changes': ["root[2]: 2=<type 'int'> vs. 2=<type 'str'>"]}
Der Wert eines Artikels hat sich geändert
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:4, 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'values_changed': ['root[2]: 2 ====>> 4']}
Artikel hinzugefügt und / oder entfernt
>>> t1 = {1:1, 2:2, 3:3, 4:4}
>>> t2 = {1:1, 2:4, 3:3, 5:5, 6:6}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes)
{'dic_item_added': ['root[5, 6]'],
'dic_item_removed': ['root[4]'],
'values_changed': ['root[2]: 2 ====>> 4']}
String Unterschied
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world"}}
>>> t2 = {1:1, 2:4, 3:3, 4:{"a":"hello", "b":"world!"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ 'root[2]: 2 ====>> 4',
"root[4]['b']:\n--- \n+++ \n@@ -1 +1 @@\n-world\n+world!"]}
>>>
>>> print (ddiff.changes['values_changed'][1])
root[4]['b']:
---
+++
@@ -1 +1 @@
-world
+world!
Saitendifferenz 2
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world!\nGoodbye!\n1\n2\nEnd"}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n1\n2\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ "root[4]['b']:\n--- \n+++ \n@@ -1,5 +1,4 @@\n-world!\n-Goodbye!\n+world\n 1\n 2\n End"]}
>>>
>>> print (ddiff.changes['values_changed'][0])
root[4]['b']:
---
+++
@@ -1,5 +1,4 @@
-world!
-Goodbye!
+world
1
2
End
Typänderung
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n\n\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'type_changes': [ "root[4]['b']: [1, 2, 3]=<type 'list'> vs. world\n\n\nEnd=<type 'str'>"]}
Listenunterschied
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'list_removed': ["root[4]['b']: [3]"]}
Listenunterschied 2: Beachten Sie, dass die Reihenfolge NICHT berücksichtigt wird
>>> # Note that it DOES NOT take order into account
... t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ }
Liste mit Wörterbuch:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:1, 2:2}]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:3}]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'dic_item_removed': ["root[4]['b'][2][2]"],
'values_changed': ["root[4]['b'][2][1]: 1 ====>> 3"]}
einfachster Weg,
benutze set (). different (set ())
list_a = [1,2,3]
list_b = [2,3]
print set(list_a).difference(set(list_b))
Antwort ist set([1])
Bei einer Liste von Wörterbüchern funktioniert die vollständige Listenverständnislösung, während die set
Lösung ausgelöst wird
TypeError: unhashable type: 'dict'
def diff(a, b):
return [aa for aa in a if aa not in b]
d1 = {"a":1, "b":1}
d2 = {"a":2, "b":2}
d3 = {"a":3, "b":3}
>>> diff([d1, d2, d3], [d2, d3])
[{'a': 1, 'b': 1}]
>>> diff([d1, d2, d3], [d1])
[{'a': 2, 'b': 2}, {'a': 3, 'b': 3}]
Wenn Sie sich TimeComplexity of In-Operator ansehen, funktioniert es im schlimmsten Fall mit O (n). Auch für Sets.
Wenn wir also zwei Arrays vergleichen, haben wir im besten Fall eine Zeitkomplexität von O (n) und im schlechtesten Fall von O (n ^ 2).
Eine alternative (aber leider komplexere) Lösung, die im besten und im schlechtesten Fall mit O (n) funktioniert, ist diese:
# Compares the difference of list a and b
# uses a callback function to compare items
def diff(a, b, callback):
a_missing_in_b = []
ai = 0
bi = 0
a = sorted(a, callback)
b = sorted(b, callback)
while (ai < len(a)) and (bi < len(b)):
cmp = callback(a[ai], b[bi])
if cmp < 0:
a_missing_in_b.append(a[ai])
ai += 1
elif cmp > 0:
# Item b is missing in a
bi += 1
else:
# a and b intersecting on this item
ai += 1
bi += 1
# if a and b are not of same length, we need to add the remaining items
for ai in xrange(ai, len(a)):
a_missing_in_b.append(a[ai])
return a_missing_in_b
z.B
>>> a=[1,2,3]
>>> b=[2,4,6]
>>> diff(a, b, cmp)
[1, 3]
set(b)
Erwägen Sie die Verwendung, um sicherzustellen, dass der Algorithmus O (nlogn) anstelle von Theta (n ^ 2) ist