Ich habe ein neuronales LSTM (RNN) -Netzwerk mit überwachtem Lernen zur Vorhersage des Datenbestands erstellt. Das Problem ist, warum es auf seinen eigenen Trainingsdaten falsch vorhersagt? (Hinweis: reproduzierbares Beispiel unten)
Ich habe ein einfaches Modell erstellt, um den Aktienkurs der nächsten 5 Tage vorherzusagen:
model = Sequential()
model.add(LSTM(32, activation='sigmoid', input_shape=(x_train.shape[1], x_train.shape[2])))
model.add(Dense(y_train.shape[1]))
model.compile(optimizer='adam', loss='mse')
es = EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True)
model.fit(x_train, y_train, batch_size=64, epochs=25, validation_data=(x_test, y_test), callbacks=[es])
Die korrekten Ergebnisse sind in y_test
(5 Werte), also Modelleisenbahnen, die 90 Tage zurückblicken und dann die Gewichte aus dem besten ( val_loss=0.0030
) Ergebnis wiederherstellen mit patience=3
:
Train on 396 samples, validate on 1 samples
Epoch 1/25
396/396 [==============================] - 1s 2ms/step - loss: 0.1322 - val_loss: 0.0299
Epoch 2/25
396/396 [==============================] - 0s 402us/step - loss: 0.0478 - val_loss: 0.0129
Epoch 3/25
396/396 [==============================] - 0s 397us/step - loss: 0.0385 - val_loss: 0.0178
Epoch 4/25
396/396 [==============================] - 0s 399us/step - loss: 0.0398 - val_loss: 0.0078
Epoch 5/25
396/396 [==============================] - 0s 391us/step - loss: 0.0343 - val_loss: 0.0030
Epoch 6/25
396/396 [==============================] - 0s 391us/step - loss: 0.0318 - val_loss: 0.0047
Epoch 7/25
396/396 [==============================] - 0s 389us/step - loss: 0.0308 - val_loss: 0.0043
Epoch 8/25
396/396 [==============================] - 0s 393us/step - loss: 0.0292 - val_loss: 0.0056
Das Vorhersageergebnis ist ziemlich beeindruckend, nicht wahr?
Das liegt daran, dass der Algorithmus die besten Gewichte aus der 5. Epoche wiederhergestellt hat. Okey, speichern wir dieses Modell jetzt in einer .h5
Datei, verschieben uns -10 Tage zurück und sagen die letzten 5 Tage voraus (im ersten Beispiel haben wir das Modell erstellt und am 17. und 23. April einschließlich der freien Wochenenden validiert, jetzt testen wir am 2. bis 8. April). Ergebnis:
Es zeigt absolut falsche Richtung. Wie wir sehen, liegt das daran, dass das Modell trainiert wurde und am 17. und 23. April die beste Epoche Nr. 5 für die Validierung erreichte, jedoch nicht am 2. und 8. April. Wenn ich versuche, mehr zu trainieren und mit der Epoche zu spielen, die ich wählen möchte, was auch immer ich tue, gibt es in der Vergangenheit immer viele Zeitintervalle, die falsche Vorhersagen haben.
Warum zeigt das Modell anhand seiner eigenen trainierten Daten falsche Ergebnisse? Ich habe Daten trainiert, es muss sich daran erinnern, wie man Daten auf diesem Satz vorhersagt, sagt aber falsch voraus. Was ich auch versucht habe:
- Verwenden Sie große Datenmengen mit mehr als 50.000 Zeilen und Aktienkursen für 20 Jahre, und fügen Sie mehr oder weniger Funktionen hinzu
- Erstellen Sie verschiedene Modelltypen, z. B. das Hinzufügen weiterer versteckter Ebenen, verschiedener Batch-Größen, verschiedener Ebenenaktivierungen, Aussetzer und Batch-Normalisierung
- Erstellen Sie einen benutzerdefinierten EarlyStopping-Rückruf, erhalten Sie den durchschnittlichen Wertverlust aus vielen Validierungsdatensätzen und wählen Sie den besten aus
Vielleicht vermisse ich etwas? Was kann ich verbessern?
Hier ist ein sehr einfaches und reproduzierbares Beispiel. yfinance
lädt S & P 500 Bestandsdaten herunter.
"""python 3.7.7
tensorflow 2.1.0
keras 2.3.1"""
import numpy as np
import pandas as pd
from keras.callbacks import EarlyStopping, Callback
from keras.models import Model, Sequential, load_model
from keras.layers import Dense, Dropout, LSTM, BatchNormalization
from sklearn.preprocessing import MinMaxScaler
import plotly.graph_objects as go
import yfinance as yf
np.random.seed(4)
num_prediction = 5
look_back = 90
new_s_h5 = True # change it to False when you created model and want test on other past dates
df = yf.download(tickers="^GSPC", start='2018-05-06', end='2020-04-24', interval="1d")
data = df.filter(['Close', 'High', 'Low', 'Volume'])
# drop last N days to validate saved model on past
df.drop(df.tail(0).index, inplace=True)
print(df)
class EarlyStoppingCust(Callback):
def __init__(self, patience=0, verbose=0, validation_sets=None, restore_best_weights=False):
super(EarlyStoppingCust, self).__init__()
self.patience = patience
self.verbose = verbose
self.wait = 0
self.stopped_epoch = 0
self.restore_best_weights = restore_best_weights
self.best_weights = None
self.validation_sets = validation_sets
def on_train_begin(self, logs=None):
self.wait = 0
self.stopped_epoch = 0
self.best_avg_loss = (np.Inf, 0)
def on_epoch_end(self, epoch, logs=None):
loss_ = 0
for i, validation_set in enumerate(self.validation_sets):
predicted = self.model.predict(validation_set[0])
loss = self.model.evaluate(validation_set[0], validation_set[1], verbose = 0)
loss_ += loss
if self.verbose > 0:
print('val' + str(i + 1) + '_loss: %.5f' % loss)
avg_loss = loss_ / len(self.validation_sets)
print('avg_loss: %.5f' % avg_loss)
if self.best_avg_loss[0] > avg_loss:
self.best_avg_loss = (avg_loss, epoch + 1)
self.wait = 0
if self.restore_best_weights:
print('new best epoch = %d' % (epoch + 1))
self.best_weights = self.model.get_weights()
else:
self.wait += 1
if self.wait >= self.patience or self.params['epochs'] == epoch + 1:
self.stopped_epoch = epoch
self.model.stop_training = True
if self.restore_best_weights:
if self.verbose > 0:
print('Restoring model weights from the end of the best epoch')
self.model.set_weights(self.best_weights)
def on_train_end(self, logs=None):
print('best_avg_loss: %.5f (#%d)' % (self.best_avg_loss[0], self.best_avg_loss[1]))
def multivariate_data(dataset, target, start_index, end_index, history_size, target_size, step, single_step=False):
data = []
labels = []
start_index = start_index + history_size
if end_index is None:
end_index = len(dataset) - target_size
for i in range(start_index, end_index):
indices = range(i-history_size, i, step)
data.append(dataset[indices])
if single_step:
labels.append(target[i+target_size])
else:
labels.append(target[i:i+target_size])
return np.array(data), np.array(labels)
def transform_predicted(pr):
pr = pr.reshape(pr.shape[1], -1)
z = np.zeros((pr.shape[0], x_train.shape[2] - 1), dtype=pr.dtype)
pr = np.append(pr, z, axis=1)
pr = scaler.inverse_transform(pr)
pr = pr[:, 0]
return pr
step = 1
# creating datasets with look back
scaler = MinMaxScaler()
df_normalized = scaler.fit_transform(df.values)
dataset = df_normalized[:-num_prediction]
x_train, y_train = multivariate_data(dataset, dataset[:, 0], 0,len(dataset) - num_prediction + 1, look_back, num_prediction, step)
indices = range(len(dataset)-look_back, len(dataset), step)
x_test = np.array(dataset[indices])
x_test = np.expand_dims(x_test, axis=0)
y_test = np.expand_dims(df_normalized[-num_prediction:, 0], axis=0)
# creating past datasets to validate with EarlyStoppingCust
number_validates = 50
step_past = 5
validation_sets = [(x_test, y_test)]
for i in range(1, number_validates * step_past + 1, step_past):
indices = range(len(dataset)-look_back-i, len(dataset)-i, step)
x_t = np.array(dataset[indices])
x_t = np.expand_dims(x_t, axis=0)
y_t = np.expand_dims(df_normalized[-num_prediction-i:len(df_normalized)-i, 0], axis=0)
validation_sets.append((x_t, y_t))
if new_s_h5:
model = Sequential()
model.add(LSTM(32, return_sequences=False, activation = 'sigmoid', input_shape=(x_train.shape[1], x_train.shape[2])))
# model.add(Dropout(0.2))
# model.add(BatchNormalization())
# model.add(LSTM(units = 16))
model.add(Dense(y_train.shape[1]))
model.compile(optimizer = 'adam', loss = 'mse')
# EarlyStoppingCust is custom callback to validate each validation_sets and get average
# it takes epoch with best "best_avg" value
# es = EarlyStoppingCust(patience = 3, restore_best_weights = True, validation_sets = validation_sets, verbose = 1)
# or there is keras extension with built-in EarlyStopping, but it validates only 1 set that you pass through fit()
es = EarlyStopping(monitor = 'val_loss', patience = 3, restore_best_weights = True)
model.fit(x_train, y_train, batch_size = 64, epochs = 25, shuffle = True, validation_data = (x_test, y_test), callbacks = [es])
model.save('s.h5')
else:
model = load_model('s.h5')
predicted = model.predict(x_test)
predicted = transform_predicted(predicted)
print('predicted', predicted)
print('real', df.iloc[-num_prediction:, 0].values)
print('val_loss: %.5f' % (model.evaluate(x_test, y_test, verbose=0)))
fig = go.Figure()
fig.add_trace(go.Scatter(
x = df.index[-60:],
y = df.iloc[-60:,0],
mode='lines+markers',
name='real',
line=dict(color='#ff9800', width=1)
))
fig.add_trace(go.Scatter(
x = df.index[-num_prediction:],
y = predicted,
mode='lines+markers',
name='predict',
line=dict(color='#2196f3', width=1)
))
fig.update_layout(template='plotly_dark', hovermode='x', spikedistance=-1, hoverlabel=dict(font_size=16))
fig.update_xaxes(showspikes=True)
fig.update_yaxes(showspikes=True)
fig.show()
df.drop(df.tail(10).index, inplace=True)
, es zeigte das gleiche schlechte Ergebnis wie ich.