Ich frage mich, wie die Standardstartwerte in angegeben werden glm
.
Dieser Beitrag schlägt vor, dass Standardwerte als Nullen festgelegt werden. Das man sagt , dass es ein Algorithmus dahinter jedoch relevante Verbindung unterbrochen wird.
Ich habe versucht, ein einfaches logistisches Regressionsmodell mit einem Algorithmus-Trace zu versehen:
set.seed(123)
x <- rnorm(100)
p <- 1/(1 + exp(-x))
y <- rbinom(100, size = 1, prob = p)
# to see parameter estimates in each step
trace(glm.fit, quote(print(coefold)), at = list(c(22, 4, 8, 4, 19, 3)))
Erstens ohne Angabe von Anfangswerten:
glm(y ~ x, family = "binomial")
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
NULL
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.386379 1.106234
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3991135 1.1653971
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3995188 1.1669508
Im ersten Schritt sind Anfangswerte NULL
.
Zweitens setze ich Startwerte auf Nullen:
glm(y ~ x, family = "binomial", start = c(0, 0))
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0 0
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3177530 0.9097521
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3909975 1.1397163
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3994147 1.1666173
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3995191 1.1669518
Und wir können sehen, dass sich die Iterationen zwischen dem ersten und dem zweiten Ansatz unterscheiden.
Um die von angegebenen Werte zu sehen, habe glm
ich versucht, das Modell mit nur einer Iteration anzupassen:
glm(y ~ x, family = "binomial", control = list(maxit = 1))
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
NULL
Call: glm(formula = y ~ x, family = "binomial", control = list(maxit = 1))
Coefficients:
(Intercept) x
0.3864 1.1062
Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 134.6
Residual Deviance: 115 AIC: 119
Schätzungen von Parametern entsprechen (nicht überraschend) Schätzungen des ersten Ansatzes in der zweiten Iteration, dh das [1] 0.386379 1.106234
Festlegen dieser Werte als Anfangswerte führt zu derselben Iterationssequenz wie im ersten Ansatz:
glm(y ~ x, family = "binomial", start = c(0.386379, 1.106234))
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.386379 1.106234
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3991135 1.1653971
Tracing glm.fit(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, .... step 22,4,8,4,19,3
[1] 0.3995188 1.1669508
Die Frage ist also, wie diese Werte berechnet werden.
glm.fit
Code zu studieren , aber ich habe immer noch keine Ahnung, wie die Anfangswerte berechnet werden.
start
Werte angeben, werden diese zur Berechnung der Übergabe an dieC_Cdqrls
Routine verwendet. Wenn Sie dies nicht tun, werden die übergebenen Werte berechnet (einschließlich eines Aufrufseval(binomial()$initialize)
),glm.fit
berechnen jedoch niemals explizit Werte fürstart
. Nehmen Sie sich ein oder zwei Stunden Zeit und studieren Sie denglm.fit
Code.