Ich arbeite mit 3D Pointcloud von Lidar. Die Punkte werden durch ein numpy-Array angegeben, das folgendermaßen aussieht:
points = np.array([[61651921, 416326074, 39805], [61605255, 416360555, 41124], [61664810, 416313743, 39900], [61664837, 416313749, 39910], [61674456, 416316663, 39503], [61651933, 416326074, 39802], [61679969, 416318049, 39500], [61674494, 416316677, 39508], [61651908, 416326079, 39800], [61651908, 416326087, 39802], [61664845, 416313738, 39913], [61674480, 416316668, 39503], [61679996, 416318047, 39510], [61605290, 416360572, 41118], [61605270, 416360565, 41122], [61683939, 416313004, 41052], [61683936, 416313033, 41060], [61679976, 416318044, 39509], [61605279, 416360555, 41109], [61664837, 416313739, 39915], [61674487, 416316666, 39505], [61679961, 416318035, 39503], [61683943, 416313004, 41054], [61683930, 416313042, 41059]])
Ich möchte meine Daten in Würfel mit einer Größe gruppieren, 50*50*50
damit jeder Würfel einige Hash-Indizes und Numpy-Indizes meiner points
enthaltenen Würfel beibehält . Um eine Aufteilung zu erhalten, ordne ich folgende cubes = points \\ 50
Ausgänge zu:
cubes = np.array([[1233038, 8326521, 796], [1232105, 8327211, 822], [1233296, 8326274, 798], [1233296, 8326274, 798], [1233489, 8326333, 790], [1233038, 8326521, 796], [1233599, 8326360, 790], [1233489, 8326333, 790], [1233038, 8326521, 796], [1233038, 8326521, 796], [1233296, 8326274, 798], [1233489, 8326333, 790], [1233599, 8326360, 790], [1232105, 8327211, 822], [1232105, 8327211, 822], [1233678, 8326260, 821], [1233678, 8326260, 821], [1233599, 8326360, 790], [1232105, 8327211, 822], [1233296, 8326274, 798], [1233489, 8326333, 790], [1233599, 8326360, 790], [1233678, 8326260, 821], [1233678, 8326260, 821]])
Meine gewünschte Ausgabe sieht folgendermaßen aus:
{(1232105, 8327211, 822): [1, 13, 14, 18]),
(1233038, 8326521, 796): [0, 5, 8, 9],
(1233296, 8326274, 798): [2, 3, 10, 19],
(1233489, 8326333, 790): [4, 7, 11, 20],
(1233599, 8326360, 790): [6, 12, 17, 21],
(1233678, 8326260, 821): [15, 16, 22, 23]}
Meine echte Punktwolke enthält bis zu einige hundert Millionen 3D-Punkte. Was ist der schnellste Weg, um diese Art der Gruppierung durchzuführen?
Ich habe die meisten verschiedenen Lösungen ausprobiert. Hier ist ein Vergleich der Zeitaufnahme unter der Annahme, dass die Größe der Punkte etwa 20 Millionen und die Größe der einzelnen Würfel etwa 1 Million beträgt:
Pandas [Tupel (elem) -> np.array (dtype = int64)]
import pandas as pd
print(pd.DataFrame(cubes).groupby([0,1,2]).indices)
#takes 9sec
Defauldict [elem.tobytes () oder Tupel -> Liste]
#thanks @abc:
result = defaultdict(list)
for idx, elem in enumerate(cubes):
result[elem.tobytes()].append(idx) # takes 20.5sec
# result[elem[0], elem[1], elem[2]].append(idx) #takes 27sec
# result[tuple(elem)].append(idx) # takes 50sec
numpy_indexed [int -> np.array]
# thanks @Eelco Hoogendoorn for his library
values = npi.group_by(cubes).split(np.arange(len(cubes)))
result = dict(enumerate(values))
# takes 9.8sec
Pandas + Dimensionsreduktion [int -> np.array (dtype = int64)]
# thanks @Divakar for showing numexpr library:
import numexpr as ne
def dimensionality_reduction(cubes):
#cubes = cubes - np.min(cubes, axis=0) #in case some coords are negative
cubes = cubes.astype(np.int64)
s0, s1 = cubes[:,0].max()+1, cubes[:,1].max()+1
d = {'s0':s0,'s1':s1,'c0':cubes[:,0],'c1':cubes[:,1],'c2':cubes[:,2]}
c1D = ne.evaluate('c0+c1*s0+c2*s0*s1',d)
return c1D
cubes = dimensionality_reduction(cubes)
result = pd.DataFrame(cubes).groupby([0]).indices
# takes 2.5 seconds
Es ist möglich , zum Download - cubes.npz
Datei hier und einen Befehl
cubes = np.load('cubes.npz')['array']
um die Leistungszeit zu überprüfen.
numpy_indexed
nähert sich auch nur. Ich denke es ist richtig. Ich verwende pandas
derzeit für meine Klassifizierungsprozesse.