Was ist ein eleganter Weg, um alle Permutationen einer Zeichenfolge zu finden. ZB Permutation für ba
, wäre ba
und ab
, aber was ist mit längeren Zeichenfolgen wie abcdefgh
? Gibt es ein Java-Implementierungsbeispiel?
Was ist ein eleganter Weg, um alle Permutationen einer Zeichenfolge zu finden. ZB Permutation für ba
, wäre ba
und ab
, aber was ist mit längeren Zeichenfolgen wie abcdefgh
? Gibt es ein Java-Implementierungsbeispiel?
Antworten:
public static void permutation(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
n==0
, können Sie ein Level früher anhalten n==1
und ausdrucken prefix + str
.
Rekursion verwenden.
Hier ist meine Lösung, die auf der Idee des Buches "Cracking the Coding Interview" (P54) basiert:
/**
* List permutations of a string.
*
* @param s the input string
* @return the list of permutations
*/
public static ArrayList<String> permutation(String s) {
// The result
ArrayList<String> res = new ArrayList<String>();
// If input string's length is 1, return {s}
if (s.length() == 1) {
res.add(s);
} else if (s.length() > 1) {
int lastIndex = s.length() - 1;
// Find out the last character
String last = s.substring(lastIndex);
// Rest of the string
String rest = s.substring(0, lastIndex);
// Perform permutation on the rest string and
// merge with the last character
res = merge(permutation(rest), last);
}
return res;
}
/**
* @param list a result of permutation, e.g. {"ab", "ba"}
* @param c the last character
* @return a merged new list, e.g. {"cab", "acb" ... }
*/
public static ArrayList<String> merge(ArrayList<String> list, String c) {
ArrayList<String> res = new ArrayList<>();
// Loop through all the string in the list
for (String s : list) {
// For each string, insert the last character to all possible positions
// and add them to the new list
for (int i = 0; i <= s.length(); ++i) {
String ps = new StringBuffer(s).insert(i, c).toString();
res.add(ps);
}
}
return res;
}
Laufende Ausgabe der Zeichenfolge "abcd":
Schritt 1: Füge [a] und b zusammen: [ba, ab]
Schritt 2: Füge [ba, ab] und c zusammen: [cba, bca, bac, cab, acb, abc]
Schritt 3: Zusammenführen von [cba, bca, bac, cab, acb, abc] und d: [dcba, cdba, cbda, cbad, dbca, bdca, bcda, bcad, dbac, bdac, badc, bacd, dcab, cdab, cadb , cabd, dacb, adcb, acdb, acbd, dabc, adbc, abdc, abcd]
Von allen hier und in anderen Foren angegebenen Lösungen hat mir Mark Byers am besten gefallen. Diese Beschreibung hat mich tatsächlich zum Nachdenken und Codieren gebracht. Schade, dass ich seine Lösung nicht abstimmen kann, da ich Neuling bin.
Sowieso hier ist meine Umsetzung seiner Beschreibung
public class PermTest {
public static void main(String[] args) throws Exception {
String str = "abcdef";
StringBuffer strBuf = new StringBuffer(str);
doPerm(strBuf,0);
}
private static void doPerm(StringBuffer str, int index){
if(index == str.length())
System.out.println(str);
else { //recursively solve this by placing all other chars at current first pos
doPerm(str, index+1);
for (int i = index+1; i < str.length(); i++) {//start swapping all other chars with current first char
swap(str,index, i);
doPerm(str, index+1);
swap(str,i, index);//restore back my string buffer
}
}
}
private static void swap(StringBuffer str, int pos1, int pos2){
char t1 = str.charAt(pos1);
str.setCharAt(pos1, str.charAt(pos2));
str.setCharAt(pos2, t1);
}
}
Ich bevorzuge diese Lösung vor der ersten in diesem Thread, da diese Lösung StringBuffer verwendet. Ich würde nicht sagen, dass meine Lösung keine temporäre Zeichenfolge erstellt (tatsächlich dort, system.out.println
wo der toString()
von StringBuffer aufgerufen wird). Ich bin jedoch der Meinung, dass dies besser ist als die erste Lösung, bei der zu viele Zeichenfolgenliterale erstellt werden. Vielleicht kann ein Performance-Typ da draußen dies in Bezug auf "Speicher" bewerten (für "Zeit" bleibt es aufgrund dieses zusätzlichen "Austauschs" bereits zurück)
if(index == str.length())
und doPerm(str, index + 1);
? Das currPos
scheint hier unnötig.
Eine sehr einfache Lösung in Java ist die Verwendung von Rekursion + Set (um Wiederholungen zu vermeiden), wenn Sie die Lösungszeichenfolgen speichern und zurückgeben möchten:
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}
Alle vorherigen Mitwirkenden haben großartige Arbeit geleistet, um den Code zu erklären und bereitzustellen. Ich dachte, ich sollte diesen Ansatz auch teilen, weil er auch jemandem helfen könnte. Die Lösung basiert auf ( Heaps 'Algorithmus )
Ein paar Dinge:
Beachten Sie, dass der letzte Punkt, der im Excel abgebildet ist, nur dazu dient, Ihnen zu helfen, die Logik besser zu visualisieren. Die tatsächlichen Werte in der letzten Spalte wären also 2,1,0 (wenn wir den Code ausführen würden, weil es sich um Arrays handelt und Arrays mit 0 beginnen).
Der Austauschalgorithmus basiert auf geraden oder ungeraden Werten der aktuellen Position. Es ist sehr selbsterklärend, wenn Sie sich ansehen, wo die Swap-Methode aufgerufen wird. Sie können sehen, was los ist.
Folgendes passiert:
public static void main(String[] args) {
String ourword = "abc";
String[] ourArray = ourword.split("");
permute(ourArray, ourArray.length);
}
private static void swap(String[] ourarray, int right, int left) {
String temp = ourarray[right];
ourarray[right] = ourarray[left];
ourarray[left] = temp;
}
public static void permute(String[] ourArray, int currentPosition) {
if (currentPosition == 1) {
System.out.println(Arrays.toString(ourArray));
} else {
for (int i = 0; i < currentPosition; i++) {
// subtract one from the last position (here is where you are
// selecting the the next last item
permute(ourArray, currentPosition - 1);
// if it's odd position
if (currentPosition % 2 == 1) {
swap(ourArray, 0, currentPosition - 1);
} else {
swap(ourArray, i, currentPosition - 1);
}
}
}
}
Dieser ist ohne Rekursion
public static void permute(String s) {
if(null==s || s.isEmpty()) {
return;
}
// List containing words formed in each iteration
List<String> strings = new LinkedList<String>();
strings.add(String.valueOf(s.charAt(0))); // add the first element to the list
// Temp list that holds the set of strings for
// appending the current character to all position in each word in the original list
List<String> tempList = new LinkedList<String>();
for(int i=1; i< s.length(); i++) {
for(int j=0; j<strings.size(); j++) {
tempList.addAll(merge(s.charAt(i), strings.get(j)));
}
strings.removeAll(strings);
strings.addAll(tempList);
tempList.removeAll(tempList);
}
for(int i=0; i<strings.size(); i++) {
System.out.println(strings.get(i));
}
}
/**
* helper method that appends the given character at each position in the given string
* and returns a set of such modified strings
* - set removes duplicates if any(in case a character is repeated)
*/
private static Set<String> merge(Character c, String s) {
if(s==null || s.isEmpty()) {
return null;
}
int len = s.length();
StringBuilder sb = new StringBuilder();
Set<String> list = new HashSet<String>();
for(int i=0; i<= len; i++) {
sb = new StringBuilder();
sb.append(s.substring(0, i) + c + s.substring(i, len));
list.add(sb.toString());
}
return list;
}
System.out.println(permute("AABBC").size());
Anzeigen 45, aber tatsächlich 5! = 120
Verwenden wir die Eingabe abc
als Beispiel .
Beginnen Sie mit nur dem letzten Element ( c
) in einer Menge ( ["c"]
), fügen Sie dann das vorletzte Element ( b
) an der Vorderseite, am Ende und an allen möglichen Positionen in der Mitte hinzu und machen Sie es ["bc", "cb"]
dann auf die gleiche Weise zum nächsten Element von der Rückseite ( a
) zu jeder Zeichenfolge im Set, die es macht:
"a" + "bc" = ["abc", "bac", "bca"] and "a" + "cb" = ["acb" ,"cab", "cba"]
Also gesamte Permutation:
["abc", "bac", "bca","acb" ,"cab", "cba"]
Code:
public class Test
{
static Set<String> permutations;
static Set<String> result = new HashSet<String>();
public static Set<String> permutation(String string) {
permutations = new HashSet<String>();
int n = string.length();
for (int i = n - 1; i >= 0; i--)
{
shuffle(string.charAt(i));
}
return permutations;
}
private static void shuffle(char c) {
if (permutations.size() == 0) {
permutations.add(String.valueOf(c));
} else {
Iterator<String> it = permutations.iterator();
for (int i = 0; i < permutations.size(); i++) {
String temp1;
for (; it.hasNext();) {
temp1 = it.next();
for (int k = 0; k < temp1.length() + 1; k += 1) {
StringBuilder sb = new StringBuilder(temp1);
sb.insert(k, c);
result.add(sb.toString());
}
}
}
permutations = result;
//'result' has to be refreshed so that in next run it doesn't contain stale values.
result = new HashSet<String>();
}
}
public static void main(String[] args) {
Set<String> result = permutation("abc");
System.out.println("\nThere are total of " + result.size() + " permutations:");
Iterator<String> it = result.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}
}
}
Nun, hier ist eine elegante, nicht rekursive O (n!) Lösung:
public static StringBuilder[] permutations(String s) {
if (s.length() == 0)
return null;
int length = fact(s.length());
StringBuilder[] sb = new StringBuilder[length];
for (int i = 0; i < length; i++) {
sb[i] = new StringBuilder();
}
for (int i = 0; i < s.length(); i++) {
char ch = s.charAt(i);
int times = length / (i + 1);
for (int j = 0; j < times; j++) {
for (int k = 0; k < length / times; k++) {
sb[j * length / times + k].insert(k, ch);
}
}
}
return sb;
}
Eine der einfachen Lösungen könnte darin bestehen, die Zeichen mit zwei Zeigern rekursiv auszutauschen.
public static void main(String[] args)
{
String str="abcdefgh";
perm(str);
}
public static void perm(String str)
{ char[] char_arr=str.toCharArray();
helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
if(i==char_arr.length-1)
{
// print the shuffled string
String str="";
for(int j=0; j<char_arr.length; j++)
{
str=str+char_arr[j];
}
System.out.println(str);
}
else
{
for(int j=i; j<char_arr.length; j++)
{
char tmp = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp;
helper(char_arr,i+1);
char tmp1 = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp1;
}
}
}
Python-Implementierung
def getPermutation(s, prefix=''):
if len(s) == 0:
print prefix
for i in range(len(s)):
getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )
getPermutation('abcd','')
das hat bei mir funktioniert ..
import java.util.Arrays;
public class StringPermutations{
public static void main(String args[]) {
String inputString = "ABC";
permute(inputString.toCharArray(), 0, inputString.length()-1);
}
public static void permute(char[] ary, int startIndex, int endIndex) {
if(startIndex == endIndex){
System.out.println(String.valueOf(ary));
}else{
for(int i=startIndex;i<=endIndex;i++) {
swap(ary, startIndex, i );
permute(ary, startIndex+1, endIndex);
swap(ary, startIndex, i );
}
}
}
public static void swap(char[] ary, int x, int y) {
char temp = ary[x];
ary[x] = ary[y];
ary[y] = temp;
}
}
Rekursion verwenden.
Wenn die Eingabe eine leere Zeichenfolge ist, ist die einzige Permutation eine leere Zeichenfolge. Versuchen Sie, jeden Buchstaben in der Zeichenfolge als ersten Buchstaben festzulegen, und ermitteln Sie dann alle Permutationen der verbleibenden Buchstaben mithilfe eines rekursiven Aufrufs.
import java.util.ArrayList;
import java.util.List;
class Permutation {
private static List<String> permutation(String prefix, String str) {
List<String> permutations = new ArrayList<>();
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
}
}
return permutations;
}
public static void main(String[] args) {
List<String> perms = permutation("", "abcd");
String[] array = new String[perms.size()];
for (int i = 0; i < perms.size(); i++) {
array[i] = perms.get(i);
}
int x = array.length;
for (final String anArray : array) {
System.out.println(anArray);
}
}
}
Lassen Sie mich versuchen, dieses Problem mit Kotlin anzugehen:
fun <T> List<T>.permutations(): List<List<T>> {
//escape case
if (this.isEmpty()) return emptyList()
if (this.size == 1) return listOf(this)
if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))
//recursive case
return this.flatMap { lastItem ->
this.minus(lastItem).permutations().map { it.plus(lastItem) }
}
}
Kernkonzept: Lange Liste in kleinere Liste + Rekursion aufteilen
Lange Antwort mit Beispielliste [1, 2, 3, 4]:
Selbst für eine Liste von 4 wird es schon verwirrend, alle möglichen Permutationen in Ihrem Kopf aufzulisten, und was wir tun müssen, ist genau das zu vermeiden. Es ist für uns leicht zu verstehen, wie alle Permutationen der Liste der Größen 0, 1 und 2 erstellt werden. Alles, was wir tun müssen, ist, sie in eine dieser Größen zu zerlegen und sie wieder richtig zu kombinieren. Stellen Sie sich eine Jackpot-Maschine vor: Dieser Algorithmus dreht sich von rechts nach links und schreibt auf
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
public static void main(String[] args) throws IOException {
hello h = new hello();
h.printcomp();
}
int fact=1;
public void factrec(int a,int k){
if(a>=k)
{fact=fact*k;
k++;
factrec(a,k);
}
else
{System.out.println("The string will have "+fact+" permutations");
}
}
public void printcomp(){
String str;
int k;
Scanner in = new Scanner(System.in);
System.out.println("enter the string whose permutations has to b found");
str=in.next();
k=str.length();
factrec(k,1);
String[] arr =new String[fact];
char[] array = str.toCharArray();
while(p<fact)
printcomprec(k,array,arr);
// if incase u need array containing all the permutation use this
//for(int d=0;d<fact;d++)
//System.out.println(arr[d]);
}
int y=1;
int p = 0;
int g=1;
int z = 0;
public void printcomprec(int k,char array[],String arr[]){
for (int l = 0; l < k; l++) {
for (int b=0;b<k-1;b++){
for (int i=1; i<k-g; i++) {
char temp;
String stri = "";
temp = array[i];
array[i] = array[i + g];
array[i + g] = temp;
for (int j = 0; j < k; j++)
stri += array[j];
arr[z] = stri;
System.out.println(arr[z] + " " + p++);
z++;
}
}
char temp;
temp=array[0];
array[0]=array[y];
array[y]=temp;
if (y >= k-1)
y=y-(k-1);
else
y++;
}
if (g >= k-1)
g=1;
else
g++;
}
}
/** Returns an array list containing all
* permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
ArrayList<String> perms = new ArrayList<>();
int slen = s.length();
if (slen > 0) {
// Add the first character from s to the perms array list.
perms.add(Character.toString(s.charAt(0)));
// Repeat for all additional characters in s.
for (int i = 1; i < slen; ++i) {
// Get the next character from s.
char c = s.charAt(i);
// For each of the strings currently in perms do the following:
int size = perms.size();
for (int j = 0; j < size; ++j) {
// 1. remove the string
String p = perms.remove(0);
int plen = p.length();
// 2. Add plen + 1 new strings to perms. Each new string
// consists of the removed string with the character c
// inserted into it at a unique location.
for (int k = 0; k <= plen; ++k) {
perms.add(p.substring(0, k) + c + p.substring(k));
}
}
}
}
return perms;
}
Hier ist eine einfache minimalistische rekursive Lösung in Java:
public static ArrayList<String> permutations(String s) {
ArrayList<String> out = new ArrayList<String>();
if (s.length() == 1) {
out.add(s);
return out;
}
char first = s.charAt(0);
String rest = s.substring(1);
for (String permutation : permutations(rest)) {
out.addAll(insertAtAllPositions(first, permutation));
}
return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
ArrayList<String> out = new ArrayList<String>();
for (int i = 0; i <= s.length(); ++i) {
String inserted = s.substring(0, i) + ch + s.substring(i);
out.add(inserted);
}
return out;
}
Wir können Fakultät verwenden, um herauszufinden, wie viele Zeichenfolgen mit einem bestimmten Buchstaben begonnen haben.
Beispiel: Nehmen Sie die Eingabe abcd
. (3!) == 6
Zeichenfolgen beginnen mit jedem Buchstaben von abcd
.
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
}
return sum;
}
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
} else {
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
}
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
} else {
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
System.out.println();
} // end of loop j
} // end of loop i
}
}
Dies habe ich durch grundlegendes Verständnis von Permutationen und rekursiven Funktionsaufrufen getan. Dauert etwas, ist aber unabhängig.
public class LexicographicPermutations {
public static void main(String[] args) {
// TODO Auto-generated method stub
String s="abc";
List<String>combinations=new ArrayList<String>();
combinations=permutations(s);
Collections.sort(combinations);
System.out.println(combinations);
}
private static List<String> permutations(String s) {
// TODO Auto-generated method stub
List<String>combinations=new ArrayList<String>();
if(s.length()==1){
combinations.add(s);
}
else{
for(int i=0;i<s.length();i++){
List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
for (String string : temp) {
combinations.add(s.charAt(i)+string);
}
}
}
return combinations;
}}
das erzeugt Ausgabe als[abc, acb, bac, bca, cab, cba]
.
Grundlegende Logik dahinter ist
Betrachten Sie es für jedes Zeichen als 1. Zeichen und finden Sie die Kombinationen der verbleibenden Zeichen. zB [abc](Combination of abc)->
.
a->[bc](a x Combination of (bc))->{abc,acb}
b->[ac](b x Combination of (ac))->{bac,bca}
c->[ab](c x Combination of (ab))->{cab,cba}
Und dann jede rekursiv aufrufen [bc]
, [ac]
und [ab]
unabhängig.
Java-Implementierung ohne Rekursion
public Set<String> permutate(String s){
Queue<String> permutations = new LinkedList<String>();
Set<String> v = new HashSet<String>();
permutations.add(s);
while(permutations.size()!=0){
String str = permutations.poll();
if(!v.contains(str)){
v.add(str);
for(int i = 0;i<str.length();i++){
String c = String.valueOf(str.charAt(i));
permutations.add(str.substring(i+1) + c + str.substring(0,i));
}
}
}
return v;
}
// füge jedes Zeichen in eine Arrayliste ein
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
}
}
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
}
}
if(al.isEmpty()){
al.add(ch);
} else {
al.clear();
al = locAl;
}
}
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
}
}
//Rotate and create words beginning with all letter possible and push to stack 1
//Read from stack1 and for each word create words with other letters at the next location by rotation and so on
/* eg : man
1. push1 - man, anm, nma
2. pop1 - nma , push2 - nam,nma
pop1 - anm , push2 - amn,anm
pop1 - man , push2 - mna,man
*/
public class StringPermute {
static String str;
static String word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
public static void main(String[] args) throws IOException {
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
}
stringArray1 = new String[n];
stringArray2 = new String[n];
push(word, 1);
doPermute();
display();
}
public static void push(String word, int x) {
if (x == 1)
stringArray1[++top1] = word;
else
stringArray2[++top2] = word;
}
public static String pop(int x) {
if (x == 1)
return stringArray1[top1--];
else
return stringArray2[top2--];
}
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
}
public static void popper(int length) {
// pop from stack1 , rotate each word n times and push to stack 2
if (top1 > -1) {
while (top1 > -1) {
word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 2);
}
}
}
// pop from stack2 , rotate each word n times w.r.t position and push to
// stack 1
else {
while (top2 > -1) {
word = pop(2);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 1);
}
}
}
}
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < word.length(); j++)
charstring[j] = word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
}
charstring[strlength - 1] = temp;
word = new String(charstring).trim();
}
public static void display() {
int top;
if (top1 > -1) {
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
}
}
}
Eine andere einfache Möglichkeit besteht darin, die Zeichenfolge zu durchlaufen, das noch nicht verwendete Zeichen auszuwählen und in einen Puffer zu legen. Die Schleife wird fortgesetzt, bis die Puffergröße der Zeichenfolgenlänge entspricht. Ich mag diese Back-Tracking-Lösung besser, weil:
Hier ist der Java-Code:
List<String> permute(String str) {
if (str == null) {
return null;
}
char[] chars = str.toCharArray();
boolean[] used = new boolean[chars.length];
List<String> res = new ArrayList<String>();
StringBuilder sb = new StringBuilder();
Arrays.sort(chars);
helper(chars, used, sb, res);
return res;
}
void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == chars.length) {
res.add(sb.toString());
return;
}
for (int i = 0; i < chars.length; i++) {
// avoid duplicates
if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
continue;
}
// pick the character that has not used yet
if (!used[i]) {
used[i] = true;
sb.append(chars[i]);
helper(chars, used, sb, res);
// back tracking
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
}
}
}
Eingangsstr: 1231
Ausgabeliste: {1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211}
Es wurde festgestellt, dass die Ausgabe sortiert ist und kein doppeltes Ergebnis vorliegt.
Eine Rekursion ist nicht erforderlich, auch wenn Sie eine Permutation direkt berechnen können . Diese Lösung verwendet Generika, um ein beliebiges Array zu permutieren.
Hier finden Sie eine gute Information zu diesem Algorithmus.
Für C # -Entwickler ist hier eine nützlichere Implementierung.
public static void main(String[] args) {
String word = "12345";
Character[] array = ArrayUtils.toObject(word.toCharArray());
long[] factorials = Permutation.getFactorials(array.length + 1);
for (long i = 0; i < factorials[array.length]; i++) {
Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
printPermutation(permutation);
}
}
private static void printPermutation(Character[] permutation) {
for (int i = 0; i < permutation.length; i++) {
System.out.print(permutation[i]);
}
System.out.println();
}
Dieser Algorithmus hat eine zeitliche und räumliche Komplexität von O (N) , um jede Permutation zu berechnen .
public class Permutation {
public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
T[] permutation = generatePermutation(array, sequence);
return permutation;
}
public static <T> T[] generatePermutation(T[] array, int[] sequence) {
T[] clone = array.clone();
for (int i = 0; i < clone.length - 1; i++) {
swap(clone, i, i + sequence[i]);
}
return clone;
}
private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
int[] sequence = new int[size];
for (int j = 0; j < sequence.length; j++) {
long factorial = factorials[sequence.length - j];
sequence[j] = (int) (permutationNumber / factorial);
permutationNumber = (int) (permutationNumber % factorial);
}
return sequence;
}
private static <T> void swap(T[] array, int i, int j) {
T t = array[i];
array[i] = array[j];
array[j] = t;
}
public static long[] getFactorials(int length) {
long[] factorials = new long[length];
long factor = 1;
for (int i = 0; i < length; i++) {
factor *= i <= 1 ? 1 : i;
factorials[i] = factor;
}
return factorials;
}
}
Permutation von String:
public static void main(String args[]) {
permu(0,"ABCD");
}
static void permu(int fixed,String s) {
char[] chr=s.toCharArray();
if(fixed==s.length())
System.out.println(s);
for(int i=fixed;i<s.length();i++) {
char c=chr[i];
chr[i]=chr[fixed];
chr[fixed]=c;
permu(fixed+1,new String(chr));
}
}
Hier ist eine weitere einfachere Methode zur Permutation eines Strings.
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
}
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}
}//per
}
Eine Java-Implementierung zum Drucken aller Permutationen einer bestimmten Zeichenfolge unter Berücksichtigung doppelter Zeichen und zum Drucken nur eindeutiger Zeichen lautet wie folgt:
import java.util.Set;
import java.util.HashSet;
public class PrintAllPermutations2
{
public static void main(String[] args)
{
String str = "AAC";
PrintAllPermutations2 permutation = new PrintAllPermutations2();
Set<String> uniqueStrings = new HashSet<>();
permutation.permute("", str, uniqueStrings);
}
void permute(String prefixString, String s, Set<String> set)
{
int n = s.length();
if(n == 0)
{
if(!set.contains(prefixString))
{
System.out.println(prefixString);
set.add(prefixString);
}
}
else
{
for(int i=0; i<n; i++)
{
permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
}
}
}
}
/*
* eg: abc =>{a,bc},{b,ac},{c,ab}
* =>{ca,b},{cb,a}
* =>cba,cab
* =>{ba,c},{bc,a}
* =>bca,bac
* =>{ab,c},{ac,b}
* =>acb,abc
*/
public void nonRecpermute(String prefix, String word)
{
String[] currentstr ={prefix,word};
Stack<String[]> stack = new Stack<String[]>();
stack.add(currentstr);
while(!stack.isEmpty())
{
currentstr = stack.pop();
String currentPrefix = currentstr[0];
String currentWord = currentstr[1];
if(currentWord.equals(""))
{
System.out.println("Word ="+currentPrefix);
}
for(int i=0;i<currentWord.length();i++)
{
String[] newstr = new String[2];
newstr[0]=currentPrefix + String.valueOf(currentWord.charAt(i));
newstr[1] = currentWord.substring(0, i);
if(i<currentWord.length()-1)
{
newstr[1] = newstr[1]+currentWord.substring(i+1);
}
stack.push(newstr);
}
}
}
Dies kann iterativ erfolgen, indem einfach jeder Buchstabe der Zeichenfolge nacheinander an allen Stellen der vorherigen Teilergebnisse eingefügt wird.
Wir beginnen mit [A]
, was mit B
wird [BA, AB]
und mit C
, [CBA, BCA, BAC, CAB, etc]
.
Die Laufzeit wäre O(n!)
, was für den Testfall ABCD
ist 1 x 2 x 3 x 4
.
In dem obigen Produkt ist das 1
für A
, das 2
ist für B
usw.
Pfeilprobe:
void main() {
String insertAt(String a, String b, int index)
{
return a.substring(0, index) + b + a.substring(index);
}
List<String> Permute(String word) {
var letters = word.split('');
var p_list = [ letters.first ];
for (var c in letters.sublist(1)) {
var new_list = [ ];
for (var p in p_list)
for (int i = 0; i <= p.length; i++)
new_list.add(insertAt(p, c, i));
p_list = new_list;
}
return p_list;
}
print(Permute("ABCD"));
}
Hier ist eine Java-Implementierung:
/* All Permutations of a String */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Complexity O(n*n!) */
class Ideone
{
public static ArrayList<String> strPerm(String str, ArrayList<String> list)
{
int len = str.length();
if(len==1){
list.add(str);
return list;
}
list = strPerm(str.substring(0,len-1),list);
int ls = list.size();
char ap = str.charAt(len-1);
for(int i=0;i<ls;i++){
String temp = list.get(i);
int tl = temp.length();
for(int j=0;j<=tl;j++){
list.add(temp.substring(0,j)+ap+temp.substring(j,tl));
}
}
while(true){
String temp = list.get(0);
if(temp.length()<len)
list.remove(temp);
else
break;
}
return list;
}
public static void main (String[] args) throws java.lang.Exception
{
String str = "abc";
ArrayList<String> list = new ArrayList<>();
list = strPerm(str,list);
System.out.println("Total Permutations : "+list.size());
for(int i=0;i<list.size();i++)
System.out.println(list.get(i));
}
}