Ich versuche, eine Tiefenkarte mit einer nicht kalibrierten Methode zu erhalten. Ich kann die Grundmatrix erhalten, indem ich mit SIFT entsprechende Punkte finde und dann benutze cv2.findFundamentalMat
. Ich benutze dann cv2.stereoRectifyUncalibrated
, um die Homographiematrizen für jedes Bild zu erhalten. Schließlich verwende ich cv2.warpPerspective
, um die Disparität zu korrigieren und zu berechnen, aber dies erzeugt keine gute Tiefenkarte. Die Werte sind sehr hoch, daher frage ich mich, ob ich warpPerspective
eine Rotationsmatrix aus den Homografiematrizen verwenden muss, mit denen ich sie erhalten habe stereoRectifyUncalibrated
.
Ich bin mir nicht sicher über die projektive Matrix mit dem Fall der Homographiematrix, die mit dem stereoRectifyUncalibrated
zu korrigieren ist.
Ein Teil des Codes:
#Obtainment of the correspondent point with SIFT
sift = cv2.SIFT()
###find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(dst1,None)
kp2, des2 = sift.detectAndCompute(dst2,None)
###FLANN parameters
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des1,des2,k=2)
good = []
pts1 = []
pts2 = []
###ratio test as per Lowe's paper
for i,(m,n) in enumerate(matches):
if m.distance < 0.8*n.distance:
good.append(m)
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
pts1 = np.array(pts1)
pts2 = np.array(pts2)
#Computation of the fundamental matrix
F,mask= cv2.findFundamentalMat(pts1,pts2,cv2.FM_LMEDS)
# Obtainment of the rectification matrix and use of the warpPerspective to transform them...
pts1 = pts1[:,:][mask.ravel()==1]
pts2 = pts2[:,:][mask.ravel()==1]
pts1 = np.int32(pts1)
pts2 = np.int32(pts2)
p1fNew = pts1.reshape((pts1.shape[0] * 2, 1))
p2fNew = pts2.reshape((pts2.shape[0] * 2, 1))
retBool ,rectmat1, rectmat2 = cv2.stereoRectifyUncalibrated(p1fNew,p2fNew,F,(2048,2048))
dst11 = cv2.warpPerspective(dst1,rectmat1,(2048,2048))
dst22 = cv2.warpPerspective(dst2,rectmat2,(2048,2048))
#calculation of the disparity
stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET,ndisparities=16*10, SADWindowSize=9)
disp = stereo.compute(dst22.astype(uint8), dst11.astype(uint8)).astype(np.float32)
plt.imshow(disp);plt.colorbar();plt.clim(0,400)#;plt.show()
plt.savefig("0gauche.png")
#plot depth by using disparity focal length `C1[0,0]` from stereo calibration and `T[0]` the distance between cameras
plt.imshow(C1[0,0]*T[0]/(disp),cmap='hot');plt.clim(-0,500);plt.colorbar();plt.show()
Hier sind die korrigierten Bilder mit der nicht kalibrierten Methode (und warpPerspective
):
Hier sind die korrigierten Bilder mit der kalibrierten Methode:
Ich weiß nicht, wie wichtig der Unterschied zwischen den beiden Arten von Bildern ist. Und für die kalibrierte Methode scheint sie nicht ausgerichtet zu sein.
Die Disparitätskarte mit der nicht kalibrierten Methode:
Die Tiefen werden berechnet mit: C1[0,0]*T[0]/(disp)
mit T aus dem stereoCalibrate
. Die Werte sind sehr hoch.
------------ SPÄTER BEARBEITEN ------------
Ich habe versucht, die Rekonstruktionsmatrix ( [Devernay97] , [Garcia01] ) mit der mit "stereoRectifyUncalibrated" erhaltenen Homographiematrix zu "mounten", aber das Ergebnis ist immer noch nicht gut. Mache ich das richtig
Y=np.arange(0,2048)
X=np.arange(0,2048)
(XX_field,YY_field)=np.meshgrid(X,Y)
#I mount the X, Y and disparity in a same 3D array
stock = np.concatenate((np.expand_dims(XX_field,2),np.expand_dims(YY_field,2)),axis=2)
XY_disp = np.concatenate((stock,np.expand_dims(disp,2)),axis=2)
XY_disp_reshape = XY_disp.reshape(XY_disp.shape[0]*XY_disp.shape[1],3)
Ts = np.hstack((np.zeros((3,3)),T_0)) #i use only the translations obtained with the rectified calibration...Is it correct?
# I establish the projective matrix with the homography matrix
P11 = np.dot(rectmat1,C1)
P1 = np.vstack((np.hstack((P11,np.zeros((3,1)))),np.zeros((1,4))))
P1[3,3] = 1
# P1 = np.dot(C1,np.hstack((np.identity(3),np.zeros((3,1)))))
P22 = np.dot(np.dot(rectmat2,C2),Ts)
P2 = np.vstack((P22,np.zeros((1,4))))
P2[3,3] = 1
lambda_t = cv2.norm(P1[0,:].T)/cv2.norm(P2[0,:].T)
#I define the reconstruction matrix
Q = np.zeros((4,4))
Q[0,:] = P1[0,:].T
Q[1,:] = P1[1,:].T
Q[2,:] = lambda_t*P2[1,:].T - P1[1,:].T
Q[3,:] = P1[2,:].T
#I do the calculation to get my 3D coordinates
test = []
for i in range(0,XY_disp_reshape.shape[0]):
a = np.dot(inv(Q),np.expand_dims(np.concatenate((XY_disp_reshape[i,:],np.ones((1))),axis=0),axis=1))
test.append(a)
test = np.asarray(test)
XYZ = test[:,:,0].reshape(XY_disp.shape[0],XY_disp.shape[1],4)