Kritik anderer Antworten hier:
Keine dieser Antworten ist gleich groß, sie alle hinterlassen am Ende einen kleinen Teil, sodass sie nicht vollständig ausbalanciert sind. Wenn Sie diese Funktionen zum Verteilen von Arbeit verwenden, haben Sie die Aussicht eingebaut, dass einer wahrscheinlich weit vor den anderen fertig wird, sodass er herumsteht und nichts tut, während die anderen weiter hart arbeiten.
Zum Beispiel endet die aktuelle Top-Antwort mit:
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]
Ich hasse diesen Zwerg am Ende einfach!
Andere mögen list(grouper(3, xrange(7)))
und chunk(xrange(7), 3)
beide kehren zurück : [(0, 1, 2), (3, 4, 5), (6, None, None)]
. Die None
sind nur Polsterung und meiner Meinung nach eher unelegant. Sie teilen die Iterables NICHT gleichmäßig auf.
Warum können wir diese nicht besser teilen?
Meine Lösung (en)
Hier ist eine ausgewogene Lösung, angepasst von einer Funktion , die ich in der Produktion verwendet habe (Hinweis in Python 3 zu ersetzen xrange
mit range
):
def baskets_from(items, maxbaskets=25):
baskets = [[] for _ in xrange(maxbaskets)] # in Python 3 use range
for i, item in enumerate(items):
baskets[i % maxbaskets].append(item)
return filter(None, baskets)
Und ich habe einen Generator erstellt, der dasselbe tut, wenn Sie ihn in eine Liste aufnehmen:
def iter_baskets_from(items, maxbaskets=3):
'''generates evenly balanced baskets from indexable iterable'''
item_count = len(items)
baskets = min(item_count, maxbaskets)
for x_i in xrange(baskets):
yield [items[y_i] for y_i in xrange(x_i, item_count, baskets)]
Und schließlich, da ich sehe, dass alle oben genannten Funktionen Elemente in einer zusammenhängenden Reihenfolge zurückgeben (wie sie angegeben wurden):
def iter_baskets_contiguous(items, maxbaskets=3, item_count=None):
'''
generates balanced baskets from iterable, contiguous contents
provide item_count if providing a iterator that doesn't support len()
'''
item_count = item_count or len(items)
baskets = min(item_count, maxbaskets)
items = iter(items)
floor = item_count // baskets
ceiling = floor + 1
stepdown = item_count % baskets
for x_i in xrange(baskets):
length = ceiling if x_i < stepdown else floor
yield [items.next() for _ in xrange(length)]
Ausgabe
Um sie zu testen:
print(baskets_from(xrange(6), 8))
print(list(iter_baskets_from(xrange(6), 8)))
print(list(iter_baskets_contiguous(xrange(6), 8)))
print(baskets_from(xrange(22), 8))
print(list(iter_baskets_from(xrange(22), 8)))
print(list(iter_baskets_contiguous(xrange(22), 8)))
print(baskets_from('ABCDEFG', 3))
print(list(iter_baskets_from('ABCDEFG', 3)))
print(list(iter_baskets_contiguous('ABCDEFG', 3)))
print(baskets_from(xrange(26), 5))
print(list(iter_baskets_from(xrange(26), 5)))
print(list(iter_baskets_contiguous(xrange(26), 5)))
Welches druckt aus:
[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13, 14], [15, 16, 17], [18, 19], [20, 21]]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'B', 'C'], ['D', 'E'], ['F', 'G']]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]
Beachten Sie, dass der zusammenhängende Generator Blöcke in den gleichen Längenmustern wie die beiden anderen bereitstellt, die Elemente jedoch alle in Ordnung sind und so gleichmäßig aufgeteilt sind, wie man eine Liste diskreter Elemente teilen kann.