ggplot mit 2 y-Achsen auf jeder Seite und verschiedenen Skalen


230

Ich muss ein Balkendiagramm mit der Anzahl und ein Liniendiagramm mit der Rate in einem Diagramm zeichnen. Ich kann beide getrennt ausführen, aber wenn ich sie zusammenstelle, geom_barüberlappt sich die Skalierung der ersten Ebene (dh der ) mit der zweiten Schicht (dh die geom_line).

Kann ich die Achse von geom_linenach rechts verschieben?


5
Könnten Sie hier einen Ansatz wie shwon verwenden, rpubs.com/kohske/dual_axis_in_ggplot2 ?
Tom Wenseleers


2
Scrollen Sie nach unten, um die native ggplot2Aufrufe anzuzeigen scale_y_*, die derzeit aufgerufen wird sec.axis.
PatrickT

Antworten:


106

Manchmal möchte ein Kunde zwei y-Skalen. Es ist oft sinnlos, ihnen die "fehlerhafte" Rede zu geben. Aber ich mag es, wenn ggplot2 darauf besteht, die Dinge richtig zu machen. Ich bin sicher, dass ggplot tatsächlich den durchschnittlichen Benutzer über die richtigen Visualisierungstechniken aufklärt.

Vielleicht können Sie Facettierung und Skalierung verwenden, um die beiden Datenreihen zu vergleichen? - siehe zB hier: https://github.com/hadley/ggplot2/wiki/Align-two-plots-on-a-page


30
Ich stimme Andreas zu - manchmal (wie jetzt für mich) möchte ein Kunde zwei Datensätze auf demselben Plot und möchte mich nicht über die Plottheorie sprechen hören. Entweder muss ich sie davon überzeugen, das nicht mehr zu wollen (nicht immer ein Kampf, den ich führen möchte), oder ich muss ihnen sagen, "das von mir verwendete Plot-Paket unterstützt das nicht." Deshalb wechsle ich heute für dieses spezielle Projekt von ggplot weg. = (
Ken Williams

58
Warum muss ein Plotpaket seine eigenen persönlichen Meinungen in seine Funktionsweise einbringen? Nein danke.
Colin

5
Dein Link ist verrottet. Könnten Sie Ihre Antwort bearbeiten und eine Zusammenfassung dessen veröffentlichen, was sie früher gesagt hat?
Zach

24
Kann diesem Kommentar nicht zustimmen (erneut). Es ist sehr (!) Üblich, Informationen so weit wie möglich zu verdichten, z. B. angesichts der strengen Einschränkungen, die durch wissenschaftliche Zeitschriften usw. auferlegt werden, um die Botschaft schnell zu vermitteln. Daher wird ohnehin eine zweite y-Achse hinzugefügt, und ggplot sollte meiner Meinung nach dabei helfen.
Stingery

57
Erstaunlich, wie fraglos Wörter wie "fehlerhaft" und "richtig" herumgeworfen werden, als ob sie nicht auf einer Theorie beruhen, die selbst eigentlich ziemlich eigensinnig und dogmatisch ist, aber von viel zu vielen Menschen unüberlegt akzeptiert wird, wie man sehen kann Die Tatsache, dass diese völlig nicht hilfreiche Antwort (die einen Link-Bone wirft) zum Zeitpunkt des Schreibens 72 positive Stimmen hat. Wenn Sie beispielsweise Zeitreihen vergleichen , kann es von unschätzbarem Wert sein, beide auf demselben Diagramm zu haben, da die Korrelation von Unterschieden viel einfacher zu erkennen ist. Fragen Sie einfach die Tausenden von hochqualifizierten Finanzprofis, die dies jeden Tag den ganzen Tag tun.
Thomas Browne

149

In ggplot2 ist dies nicht möglich, da ich glaube, dass Diagramme mit separaten y-Skalen (keine y-Skalen, die Transformationen voneinander sind) grundlegend fehlerhaft sind. Einige Probleme:

  • Die sind nicht invertierbar: Wenn ein Punkt im Plotbereich angegeben ist, können Sie ihn nicht eindeutig einem Punkt im Datenbereich zuordnen.

  • Sie sind im Vergleich zu anderen Optionen relativ schwer richtig zu lesen. Weitere Informationen finden Sie in einer Studie zu Dual-Scale- Datendiagrammen von Petra Isenberg, Anastasia Bezerianos, Pierre Dragicevic und Jean-Daniel Fekete.

  • Sie können leicht manipuliert werden, um irrezuführen: Es gibt keine eindeutige Möglichkeit, die relativen Skalen der Achsen anzugeben, sodass sie manipuliert werden können. Zwei Beispiele aus dem Junkcharts-Blog: eins , zwei

  • Sie sind willkürlich: Warum nur 2 Skalen, nicht 3, 4 oder 10?

Vielleicht möchten Sie auch Stephen Fews langwierige Diskussion zum Thema Dual-Scaled Axes in Graphs lesen. Sind sie jemals die beste Lösung? .


39
Würde es Ihnen etwas ausmachen, Ihre Meinung zu erläutern? Ich bin nicht aufgeklärt und denke, es ist eine ziemlich kompakte Art, zwei unabhängige Variablen zu zeichnen. Es ist auch eine Funktion, nach der gefragt zu sein scheint, und sie wird häufig verwendet.
KarlP

66
@hadley: Meistens stimme ich zu, aber es gibt eine echte Verwendung für mehrere y-Skalen - die Verwendung von 2 verschiedenen Einheiten für dieselben Daten, z. B. Celsius- und Fahrenheit-Skalen für Temperaturzeitreihen.
Richie Cotton

11
@ Hadley Ihrer Meinung nach. Weder bei mir noch bei vielen anderen Wissenschaftlern. Dies kann sicherlich erreicht werden, indem ein zweites Diagramm (mit einem vollständig transparenten Hintergrund) direkt über das erste gelegt wird, sodass sie als eins angezeigt werden. Ich weiß nur nicht, wie ich sicherstellen soll, dass die Ecken des Begrenzungsrahmens miteinander ausgerichtet / registriert sind.
Nicholas Hamilton

8
@hadley In Walther-Lieth-Klimadiagrammen werden beispielsweise häufig zwei y-Achsen verwendet. Da es ein festes Rezept gibt, wie man das macht, ist die mögliche Verwirrung minimal ...
Sebschub

32
@ Hadley Es tut mir leid, ich sehe nicht, was mit dem gegebenen Klimadiagramm problematisch ist. Wenn man Temperatur und Niederschlag in einem Diagramm zusammenfasst (mit der festen Vorschrift), kann man schnell erraten, ob es sich um feuchtes oder trockenes Klima handelt. Oder umgekehrt: Was wäre ein besserer Weg, um Temperatur, Niederschlag und ihre "Beziehung" zu visualisieren? Trotzdem vielen Dank für Ihre Arbeit in ggplot2!
Sebschub

121

Ab ggplot2 2.2.0 können Sie eine solche Sekundärachse hinzufügen (entnommen aus der Ankündigung von ggplot2 2.2.0 ):

ggplot(mpg, aes(displ, hwy)) + 
  geom_point() + 
  scale_y_continuous(
    "mpg (US)", 
    sec.axis = sec_axis(~ . * 1.20, name = "mpg (UK)")
  )

Geben Sie hier die Bildbeschreibung ein


25
Der Nachteil ist, dass nur eine Formeltransformation der aktuellen Achsen verwendet werden kann, beispielsweise keine neue Variable.
Discipulus

41

Mit den obigen Antworten und einigen Feinabstimmungen (und was auch immer es wert ist) können Sie hier zwei Skalen erreichen sec_axis:

Nehmen Sie einen einfachen (und rein fiktiven) Datensatz an dt: Fünf Tage lang wird die Anzahl der Unterbrechungen im Vergleich zur Produktivität verfolgt:

        when numinter prod
1 2018-03-20        1 0.95
2 2018-03-21        5 0.50
3 2018-03-23        4 0.70
4 2018-03-24        3 0.75
5 2018-03-25        4 0.60

(Die Bereiche beider Spalten unterscheiden sich um etwa Faktor 5).

Der folgende Code zeichnet beide Serien, die die gesamte y-Achse belegen:

ggplot() + 
  geom_bar(mapping = aes(x = dt$when, y = dt$numinter), stat = "identity", fill = "grey") +
  geom_line(mapping = aes(x = dt$when, y = dt$prod*5), size = 2, color = "blue") + 
  scale_x_date(name = "Day", labels = NULL) +
  scale_y_continuous(name = "Interruptions/day", 
    sec.axis = sec_axis(~./5, name = "Productivity % of best", 
      labels = function(b) { paste0(round(b * 100, 0), "%")})) + 
  theme(
      axis.title.y = element_text(color = "grey"),
      axis.title.y.right = element_text(color = "blue"))

Hier ist das Ergebnis (über Code + einige Farboptimierungen):

zwei Skalen in einem ggplot2

Der Punkt (mit der Ausnahme , sec_axiswenn die Y_SCALE Angabe ist zu multiplizieren jeden Wert die zweite Datenreihe mit 5 , wenn der Serie angeben. Um die Etiketten direkt im sec_axis Definition zu erhalten, braucht es dann dividiert durch 5 (und Formatierung). So Ein entscheidender Teil des obigen Codes befindet sich *5in der geom_line und ~./5in sec_axis (eine Formel, die den aktuellen Wert .durch 5 teilt ).

Im Vergleich (ich möchte die Ansätze hier nicht beurteilen) sehen zwei Diagramme übereinander so aus:

zwei Diagramme übereinander

Sie können selbst beurteilen, welcher die Nachricht besser transportiert („Stören Sie die Menschen bei der Arbeit nicht!“). Ich denke, das ist eine faire Art zu entscheiden.

Der vollständige Code für beide Bilder (es ist nicht wirklich mehr als das, was oben steht, nur vollständig und betriebsbereit) ist hier: https://gist.github.com/sebastianrothbucher/de847063f32fdff02c83b75f59c36a7d Eine ausführlichere Erklärung finden Sie hier: https: // sebastianrothbucher. github.io/datascience/r/visualization/ggplot/2018/03/24/two-scales-ggplot-r.html


31

Es gibt häufig vorkommende Duell-y-Achsen, z. B. den Klimatographen , der die monatliche Temperatur und den Niederschlag anzeigt. Hier ist eine einfache Lösung, die von Megatrons Lösung verallgemeinert wird, indem Sie die Untergrenze der Variablen auf etwas anderes als Null setzen können:

Beispieldaten:

climate <- tibble(
  Month = 1:12,
  Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
  Precip = c(49,36,47,41,53,65,81,89,90,84,73,55)
  )

Stellen Sie die folgenden zwei Werte auf Werte ein, die nahe an den Datengrenzen liegen (Sie können damit herumspielen, um die Positionen der Diagramme anzupassen; die Achsen sind weiterhin korrekt):

ylim.prim <- c(0, 180)   # in this example, precipitation
ylim.sec <- c(-4, 18)    # in this example, temperature

Im Folgenden werden die erforderlichen Berechnungen basierend auf diesen Grenzwerten durchgeführt und der Plot selbst erstellt:

b <- diff(ylim.prim)/diff(ylim.sec)
a <- b*(ylim.prim[1] - ylim.sec[1])

ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = a + Temp*b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~ (. - a)/b, name = "Temperature")) +
  scale_x_continuous("Month", breaks = 1:12) +
  ggtitle("Climatogram for Oslo (1961-1990)")  

Klimatogramm mit Temperatur als Linie und Niederschlag als Balkendiagramm

Wenn Sie sicherstellen möchten, dass die rote Linie der rechten y-Achse entspricht, können Sie themedem Code einen Satz hinzufügen :

ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = a + Temp*b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~ (. - a)/b, name = "Temperature")) +
  scale_x_continuous("Month", breaks = 1:12) +
  theme(axis.line.y.right = element_line(color = "red"), 
        axis.ticks.y.right = element_line(color = "red"),
        axis.text.y.right = element_text(color = "red"), 
        axis.title.y.right = element_text(color = "red")
        ) +
  ggtitle("Climatogram for Oslo (1961-1990)")

welche färbt die rechte Achse:

Klimatogramm mit roter rechter Achse


Dies bricht bei einigen Werten von ylim.primund ylim.sec.
Eric Krantz

5
Das ist toll. Schönes Beispiel dafür, wenn zweiachsige Diagramme nicht "fehlerhaft" sind. Ein Teil der allgemeinen tidyverse Mentalität des Denkens, dass sie mehr über Ihre Arbeit wissen als Sie.
Leo Barlach

Wenn ich bestimmte Achsengrenzen wähle (in meinem Fall ylim.prim <- c (90, 130) und ylim.sec <- c (15, 30)), wird diese nicht angewendet, sondern es werden willkürliche Grenzen gewählt, wodurch alle Skalen durcheinander gebracht werden . Ich bin nicht sicher, was mir fehlt, als ich den obigen Code kopierte und nur Variablennamen und Achsengrenzen änderte
Anke

@anke: Der Text ist etwas schlampig, wenn er sich auf ylim.prim und ylim.sec bezieht. Sie beziehen sich nicht auf die Grenzen der Achse, sondern auf die Grenzen Ihrer Daten. Wenn Sie wie erwähnt ylim.prim <- c (90, 130) und ylim.sec <- c (15, 30) einstellen, endet das Temperaturdiagramm hoch über dem Balkendiagramm (da die Temperaturachse bei -75 beginnt). , aber die Achsen für jeden Graphen sind immer noch korrekt.
Dag Hjermann

16

Sie können einen Skalierungsfaktor erstellen, der auf das zweite Geom und die rechte y-Achse angewendet wird. Dies leitet sich aus Sebastians Lösung ab.

library(ggplot2)

scaleFactor <- max(mtcars$cyl) / max(mtcars$hp)

ggplot(mtcars, aes(x=disp)) +
  geom_smooth(aes(y=cyl), method="loess", col="blue") +
  geom_smooth(aes(y=hp * scaleFactor), method="loess", col="red") +
  scale_y_continuous(name="cyl", sec.axis=sec_axis(~./scaleFactor, name="hp")) +
  theme(
    axis.title.y.left=element_text(color="blue"),
    axis.text.y.left=element_text(color="blue"),
    axis.title.y.right=element_text(color="red"),
    axis.text.y.right=element_text(color="red")
  )

Geben Sie hier die Bildbeschreibung ein

Hinweis: Verwenden von ggplot2 v3.0.0


14

Das technische Rückgrat für die Lösung dieser Herausforderung wurde vor etwa 3 Jahren von Kohske [ KOHSKE ] bereitgestellt . Das Thema und die technischen Details seiner Lösung wurden hier in Stackoverflow an mehreren Stellen erörtert [IDs: 18989001, 29235405, 21026598]. Daher werde ich nur eine bestimmte Variation und eine erläuternde Anleitung unter Verwendung der obigen Lösungen bereitstellen.

Nehmen wir an, wir haben einige Daten y1 in Gruppe G1, auf die einige Daten y2 in Gruppe G2 in irgendeiner Weise bezogen sind, z. B. Bereich / Skala transformiert oder mit etwas Rauschen. Man möchte also die Daten zusammen auf einem Plot mit der Skala von y1 links und y2 rechts darstellen.

  df <- data.frame(item=LETTERS[1:n],  y1=c(-0.8684, 4.2242, -0.3181, 0.5797, -0.4875), y2=c(-5.719, 205.184, 4.781, 41.952, 9.911 )) # made up!

> df
  item      y1         y2
1    A -0.8684 -19.154567
2    B  4.2242 219.092499
3    C -0.3181  18.849686
4    D  0.5797  46.945161
5    E -0.4875  -4.721973

Wenn wir jetzt unsere Daten zusammen mit so etwas zeichnen

ggplot(data=df, aes(label=item)) +
  theme_bw() + 
  geom_segment(aes(x='G1', xend='G2', y=y1, yend=y2), color='grey')+
  geom_text(aes(x='G1', y=y1), color='blue') +
  geom_text(aes(x='G2', y=y2), color='red') +
  theme(legend.position='none', panel.grid=element_blank())

es passt nicht gut zusammen, da der kleinere Maßstab y1 offensichtlich durch den größeren Maßstab y2 zusammengebrochen wird .

Der Trick, um dieser Herausforderung zu begegnen, besteht darin, beide Datensätze technisch gegen die erste Skala y1 zu zeichnen , die zweite jedoch gegen eine sekundäre Achse mit Beschriftungen zu melden, die die ursprüngliche Skala y2 zeigen .

Deshalb erstellen wir eine erste Hilfsfunktion CalcFudgeAxis, die Features der neuen Achse berechnet und sammelt, die angezeigt werden sollen. Die Funktion kann nach Belieben geändert werden (diese ordnet y2 nur dem Bereich von y1 zu ).

CalcFudgeAxis = function( y1, y2=y1) {
  Cast2To1 = function(x) ((ylim1[2]-ylim1[1])/(ylim2[2]-ylim2[1])*x) # x gets mapped to range of ylim2
  ylim1 <- c(min(y1),max(y1))
  ylim2 <- c(min(y2),max(y2))    
  yf <- Cast2To1(y2)
  labelsyf <- pretty(y2)  
  return(list(
    yf=yf,
    labels=labelsyf,
    breaks=Cast2To1(labelsyf)
  ))
}

was einige ergibt:

> FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )

> FudgeAxis
$yf
[1] -0.4094344  4.6831656  0.4029175  1.0034664 -0.1009335

$labels
[1] -50   0  50 100 150 200 250

$breaks
[1] -1.068764  0.000000  1.068764  2.137529  3.206293  4.275058  5.343822


> cbind(df, FudgeAxis$yf)
  item      y1         y2 FudgeAxis$yf
1    A -0.8684 -19.154567   -0.4094344
2    B  4.2242 219.092499    4.6831656
3    C -0.3181  18.849686    0.4029175
4    D  0.5797  46.945161    1.0034664
5    E -0.4875  -4.721973   -0.1009335

Jetzt habe ich Kohskes Lösung in die zweite Hilfsfunktion PlotWithFudgeAxis eingewickelt (in die wir das ggplot-Objekt und das Hilfsobjekt der neuen Achse werfen):

library(gtable)
library(grid)

PlotWithFudgeAxis = function( plot1, FudgeAxis) {
  # based on: https://rpubs.com/kohske/dual_axis_in_ggplot2
  plot2 <- plot1 + with(FudgeAxis, scale_y_continuous( breaks=breaks, labels=labels))

  #extract gtable
  g1<-ggplot_gtable(ggplot_build(plot1))
  g2<-ggplot_gtable(ggplot_build(plot2))

  #overlap the panel of the 2nd plot on that of the 1st plot
  pp<-c(subset(g1$layout, name=="panel", se=t:r))
  g<-gtable_add_grob(g1, g2$grobs[[which(g2$layout$name=="panel")]], pp$t, pp$l, pp$b,pp$l)

  ia <- which(g2$layout$name == "axis-l")
  ga <- g2$grobs[[ia]]
  ax <- ga$children[[2]]
  ax$widths <- rev(ax$widths)
  ax$grobs <- rev(ax$grobs)
  ax$grobs[[1]]$x <- ax$grobs[[1]]$x - unit(1, "npc") + unit(0.15, "cm")
  g <- gtable_add_cols(g, g2$widths[g2$layout[ia, ]$l], length(g$widths) - 1)
  g <- gtable_add_grob(g, ax, pp$t, length(g$widths) - 1, pp$b)

  grid.draw(g)
}

Jetzt kann alles zusammengestellt werden: Der folgende Code zeigt, wie die vorgeschlagene Lösung in einer täglichen Umgebung verwendet werden kann . Der Plotaufruf zeichnet jetzt nicht mehr die Originaldaten y2, sondern eine geklonte Version yf (die im vorberechneten Hilfsobjekt FudgeAxis enthalten ist ), die im Maßstab y1 ausgeführt wird . Die ursprüngliche ggplot Objet dann mit manipuliert wird Kohske die Hilfsfunktion PlotWithFudgeAxis eine zweite Achse Erhaltung der Skalen hinzuzufügen y2 . Es zeichnet auch die manipulierte Handlung.

FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )

tmpPlot <- ggplot(data=df, aes(label=item)) +
      theme_bw() + 
      geom_segment(aes(x='G1', xend='G2', y=y1, yend=FudgeAxis$yf), color='grey')+
      geom_text(aes(x='G1', y=y1), color='blue') +
      geom_text(aes(x='G2', y=FudgeAxis$yf), color='red') +
      theme(legend.position='none', panel.grid=element_blank())

PlotWithFudgeAxis(tmpPlot, FudgeAxis)

Dies wird nun wie gewünscht mit zwei Achsen dargestellt, y1 links und y2 rechts

2 Achsen

Die obige Lösung ist, um es klar zu sagen, ein begrenzter wackeliger Hack. Während es mit dem ggplot-Kernel spielt, werden einige Warnungen ausgegeben, dass wir Post-the-Fact-Skalen usw. austauschen. Es muss mit Vorsicht behandelt werden und kann in einer anderen Einstellung zu unerwünschtem Verhalten führen. Außerdem muss man möglicherweise mit den Hilfsfunktionen herumspielen, um das gewünschte Layout zu erhalten. Die Platzierung der Legende ist ein solches Problem (sie würde zwischen dem Bedienfeld und der neuen Achse platziert; deshalb habe ich sie fallen gelassen). Die Skalierung / Ausrichtung der 2-Achsen ist ebenfalls etwas schwierig: Der obige Code funktioniert gut, wenn beide Skalen die "0" enthalten, andernfalls wird eine Achse verschoben. Also definitiv mit einigen Verbesserungsmöglichkeiten ...

Wenn on das Bild speichern möchte, muss der Anruf in das Gerät open / close gewickelt werden:

png(...)
PlotWithFudgeAxis(tmpPlot, FudgeAxis)
dev.off()

9

Der folgende Artikel hat mir geholfen, zwei von ggplot2 generierte Diagramme in einer einzelnen Zeile zu kombinieren:

Mehrere Grafiken auf einer Seite (ggplot2) von Cookbook for R.

Und so könnte der Code in diesem Fall aussehen:

p1 <- 
  ggplot() + aes(mns)+ geom_histogram(aes(y=..density..), binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1) +  geom_density(alpha=.2)

p2 <- 
  ggplot() + aes(mns)+ geom_histogram( binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1)  

multiplot(p1,p2,cols=2)

Was ist mit der Multiplot-Funktion passiert? Ich erhalte die Fehlermeldung, dass die Funktion nicht gefunden werden konnte, obwohl ich die ggplot2-Bibliothek installiert und geladen habe.
Nneka

1
@Danka Die Multiplot-Funktion ist eine benutzerdefinierte Funktion (am Ende der verlinkten Seite).
Dribbel

Können Sie die Handlung hinzufügen?
Sibo Jiang

In letzter Zeit gibt es viele Pakete, die mehr Optionen / Funktionen als multiplot stackoverflow.com/a/51220506
Tung

7

Für mich war es schwierig, die Transformationsfunktion zwischen den beiden Achsen herauszufinden. Ich habe myCurveFit dafür verwendet.

> dput(combined_80_8192 %>% filter (time > 270, time < 280))
structure(list(run = c(268L, 268L, 268L, 268L, 268L, 268L, 268L, 
268L, 268L, 268L, 263L, 263L, 263L, 263L, 263L, 263L, 263L, 263L, 
263L, 263L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 
269L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 
267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 265L, 
265L, 265L, 265L, 265L, 265L, 265L, 265L, 265L, 265L, 266L, 266L, 
266L, 266L, 266L, 266L, 266L, 266L, 266L, 266L, 262L, 262L, 262L, 
262L, 262L, 262L, 262L, 262L, 262L, 262L, 264L, 264L, 264L, 264L, 
264L, 264L, 264L, 264L, 264L, 264L, 260L, 260L, 260L, 260L, 260L, 
260L, 260L, 260L, 260L, 260L), repetition = c(8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
), module = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "scenario.node[0].nicVLCTail.phyVLC", class = "factor"), 
    configname = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L), .Label = "Road-Vlc", class = "factor"), packetByteLength = c(8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L
    ), numVehicles = c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L
    ), dDistance = c(80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L), time = c(270.166006903445, 
    271.173853699836, 272.175873251122, 273.177524313334, 274.182946177105, 
    275.188959464989, 276.189675339937, 277.198250244799, 278.204619457189, 
    279.212562800009, 270.164199199177, 271.168527215152, 272.173072994958, 
    273.179210429715, 274.184351047337, 275.18980754378, 276.194816792995, 
    277.198598277809, 278.202398083519, 279.210634593917, 270.210674322891, 
    271.212395107473, 272.218871923292, 273.219060500457, 274.220486359614, 
    275.22401452372, 276.229646658839, 277.231060448138, 278.240407241942, 
    279.2437126347, 270.283554249858, 271.293168593832, 272.298574288769, 
    273.304413221348, 274.306272082517, 275.309023049011, 276.317805897347, 
    277.324403550028, 278.332855848701, 279.334046374594, 270.118608539613, 
    271.127947700074, 272.133887145863, 273.135726000491, 274.135994529981, 
    275.136563912708, 276.140120735361, 277.144298344151, 278.146885137621, 
    279.147552358659, 270.206015567272, 271.214618077209, 272.216566814903, 
    273.225435592582, 274.234014573683, 275.242949179958, 276.248417809711, 
    277.248800670023, 278.249750333404, 279.252926560188, 270.217182684494, 
    271.218357511397, 272.224698488895, 273.231112784327, 274.238740508457, 
    275.242715184122, 276.249053562718, 277.250325509798, 278.258488063493, 
    279.261141590137, 270.282904173953, 271.284689544638, 272.294220723234, 
    273.299749415592, 274.30628880553, 275.312075103126, 276.31579134717, 
    277.321905523606, 278.326305136748, 279.333056502253, 270.258991527456, 
    271.260224091407, 272.270076810133, 273.27052037648, 274.274119348094, 
    275.280808254502, 276.286353887245, 277.287064312339, 278.294444793276, 
    279.296772014594, 270.333066283904, 271.33877455992, 272.345842319903, 
    273.350858180493, 274.353972278505, 275.360454510107, 276.365088896161, 
    277.369166956941, 278.372571708911, 279.38017503079), distanceToTx = c(80.255266401689, 
    80.156059067023, 79.98823695539, 79.826647129071, 79.76678667135, 
    79.788239825292, 79.734539327997, 79.74766421514, 79.801243848241, 
    79.765920888341, 80.255266401689, 80.15850240049, 79.98823695539, 
    79.826647129071, 79.76678667135, 79.788239825292, 79.735078924078, 
    79.74766421514, 79.801243848241, 79.764622734914, 80.251248121732, 
    80.146436869316, 79.984682320466, 79.82292012342, 79.761908518748, 
    79.796988776281, 79.736920997657, 79.745038376718, 79.802638836686, 
    79.770029970452, 80.243475525691, 80.127918207499, 79.978303140866, 
    79.816259117883, 79.749322030693, 79.809916018889, 79.744456560867, 
    79.738655068783, 79.788697533211, 79.784288359619, 80.260412958482, 
    80.168426829066, 79.992034911214, 79.830845773284, 79.7756751763, 
    79.778156038931, 79.732399593756, 79.752769548846, 79.799967731078, 
    79.757585110481, 80.251248121732, 80.146436869316, 79.984682320466, 
    79.822062073459, 79.75884601899, 79.801590491435, 79.738335109094, 
    79.74347007248, 79.803215965043, 79.771471198955, 80.250257298678, 
    80.146436869316, 79.983831684476, 79.822062073459, 79.75884601899, 
    79.801590491435, 79.738335109094, 79.74347007248, 79.803849157574, 
    79.771471198955, 80.243475525691, 80.130180105198, 79.978303140866, 
    79.816881283718, 79.749322030693, 79.80984572883, 79.744456560867, 
    79.738655068783, 79.790548644175, 79.784288359619, 80.246349000313, 
    80.137056554491, 79.980581246037, 79.818924707937, 79.753176142361, 
    79.808777040341, 79.741609845588, 79.740770913572, 79.796316397253, 
    79.777593733292, 80.238796415443, 80.119021911134, 79.974810568944, 
    79.814065350562, 79.743657315504, 79.810146783217, 79.749945098869, 
    79.737122584544, 79.781650522348, 79.791554933936), headerNoError = c(0.99999999989702, 
    0.9999999999981, 0.99999999999946, 0.9999999928026, 0.99999873265475, 
    0.77080141574964, 0.99007491438593, 0.99994396605059, 0.45588747062284, 
    0.93484381262491, 0.99999999989702, 0.99999999999816, 0.99999999999946, 
    0.9999999928026, 0.99999873265475, 0.77080141574964, 0.99008458785106, 
    0.99994396605059, 0.45588747062284, 0.93480223051707, 0.99999999989735, 
    0.99999999999789, 0.99999999999946, 0.99999999287551, 0.99999876302649, 
    0.46903147501117, 0.98835168988253, 0.99994427085086, 0.45235035271542, 
    0.93496741877335, 0.99999999989803, 0.99999999999781, 0.99999999999948, 
    0.99999999318224, 0.99994254156311, 0.46891362282273, 0.93382613917348, 
    0.99994594904099, 0.93002915596843, 0.93569767251247, 0.99999999989658, 
    0.99999999998074, 0.99999999999946, 0.99999999272802, 0.99999871586781, 
    0.76935240919896, 0.99002587758346, 0.99999881589732, 0.46179415706093, 
    0.93417422376389, 0.99999999989735, 0.99999999999789, 0.99999999999946, 
    0.99999999289347, 0.99999876940486, 0.46930769326427, 0.98837353639905, 
    0.99994447154714, 0.16313586712094, 0.93500824170148, 0.99999999989744, 
    0.99999999999789, 0.99999999999946, 0.99999999289347, 0.99999876940486, 
    0.46930769326427, 0.98837353639905, 0.99994447154714, 0.16330039178981, 
    0.93500824170148, 0.99999999989803, 0.99999999999781, 0.99999999999948, 
    0.99999999316541, 0.99994254156311, 0.46794586553266, 0.93382613917348, 
    0.99994594904099, 0.9303627789484, 0.93569767251247, 0.99999999989778, 
    0.9999999999978, 0.99999999999948, 0.99999999311433, 0.99999878195152, 
    0.47101897739483, 0.93368891853679, 0.99994556595217, 0.7571113417265, 
    0.93553999975802, 0.99999999998191, 0.99999999999784, 0.99999999999971, 
    0.99999891129658, 0.99994309267792, 0.46510628979591, 0.93442584181035, 
    0.99894450514543, 0.99890078483692, 0.76933812306423), receivedPower_dbm = c(-93.023492290586, 
    -92.388378035287, -92.205716340607, -93.816400586752, -95.023489422885, 
    -100.86308557253, -98.464763536915, -96.175707680373, -102.06189538385, 
    -99.716653422746, -93.023492290586, -92.384760627397, -92.205716340607, 
    -93.816400586752, -95.023489422885, -100.86308557253, -98.464201120719, 
    -96.175707680373, -102.06189538385, -99.717150021506, -93.022927803442, 
    -92.404017215549, -92.204561341714, -93.814319484729, -95.016990717792, 
    -102.01669022332, -98.558088145955, -96.173817001483, -102.07406915124, 
    -99.71517574876, -93.021813165972, -92.409586309743, -92.20229160243, 
    -93.805335867418, -96.184419849593, -102.01709540787, -99.728735187547, 
    -96.163233028048, -99.772547164798, -99.706399753853, -93.024204617071, 
    -92.745813384859, -92.206884754512, -93.818508150122, -95.027018807793, 
    -100.87000577258, -98.467607232407, -95.005311380324, -102.04157607608, 
    -99.724619517, -93.022927803442, -92.404017215549, -92.204561341714, 
    -93.813803344588, -95.015606885523, -102.0157405687, -98.556982278361, 
    -96.172566862738, -103.21871579865, -99.714687230796, -93.022787428238, 
    -92.404017215549, -92.204274688493, -93.813803344588, -95.015606885523, 
    -102.0157405687, -98.556982278361, -96.172566862738, -103.21784988098, 
    -99.714687230796, -93.021813165972, -92.409950613665, -92.20229160243, 
    -93.805838770576, -96.184419849593, -102.02042267497, -99.728735187547, 
    -96.163233028048, -99.768774335378, -99.706399753853, -93.022228914406, 
    -92.411048503835, -92.203136463155, -93.807357409082, -95.012865008237, 
    -102.00985717796, -99.730352912911, -96.165675535906, -100.92744056572, 
    -99.708301333236, -92.735781110993, -92.408137395049, -92.119533319039, 
    -94.982938427575, -96.181073124017, -102.03018610927, -99.721633629806, 
    -97.32940323644, -97.347613268692, -100.87007386786), snr = c(49.848348091678, 
    57.698190927109, 60.17669971462, 41.529809724535, 31.452202106925, 
    8.1976890851341, 14.240447804094, 24.122884195464, 6.2202875499406, 
    10.674183333671, 49.848348091678, 57.746270018264, 60.17669971462, 
    41.529809724535, 31.452202106925, 8.1976890851341, 14.242292077376, 
    24.122884195464, 6.2202875499406, 10.672962852322, 49.854827699773, 
    57.49079026127, 60.192705735317, 41.549715223147, 31.499301851462, 
    6.2853718719014, 13.937702343688, 24.133388256416, 6.2028757927148, 
    10.677815810561, 49.867624820879, 57.417115267867, 60.224172277442, 
    41.635752021705, 24.074540962859, 6.2847854917092, 10.644529778044, 
    24.19227425387, 10.537686730745, 10.699414795917, 49.84017267426, 
    53.139646558768, 60.160512118809, 41.509660845114, 31.42665220053, 
    8.1846370024428, 14.231126423354, 31.584125885363, 6.2494585568733, 
    10.654622041348, 49.854827699773, 57.49079026127, 60.192705735317, 
    41.55465351989, 31.509340361646, 6.2867464196657, 13.941251828322, 
    24.140336174865, 4.765718874642, 10.679016976694, 49.856439162736, 
    57.49079026127, 60.196678846453, 41.55465351989, 31.509340361646, 
    6.2867464196657, 13.941251828322, 24.140336174865, 4.7666691818074, 
    10.679016976694, 49.867624820879, 57.412299088098, 60.224172277442, 
    41.630930975211, 24.074540962859, 6.279972363168, 10.644529778044, 
    24.19227425387, 10.546845071479, 10.699414795917, 49.862851240855, 
    57.397787176282, 60.212457625018, 41.61637603957, 31.529239767749, 
    6.2952688513108, 10.640565481982, 24.178672145334, 8.0771089950663, 
    10.694731030907, 53.262541905639, 57.43627424514, 61.382796189332, 
    31.747253311549, 24.093100244121, 6.2658701281075, 10.661949889074, 
    18.495227442305, 18.417839037171, 8.1845086722809), frameId = c(15051, 
    15106, 15165, 15220, 15279, 15330, 15385, 15452, 15511, 15566, 
    15019, 15074, 15129, 15184, 15239, 15298, 15353, 15412, 15471, 
    15526, 14947, 14994, 15057, 15112, 15171, 15226, 15281, 15332, 
    15391, 15442, 14971, 15030, 15085, 15144, 15203, 15262, 15321, 
    15380, 15435, 15490, 14915, 14978, 15033, 15092, 15147, 15198, 
    15257, 15312, 15371, 15430, 14975, 15034, 15089, 15140, 15195, 
    15254, 15313, 15368, 15427, 15478, 14987, 15046, 15105, 15160, 
    15215, 15274, 15329, 15384, 15447, 15506, 14943, 15002, 15061, 
    15116, 15171, 15230, 15285, 15344, 15399, 15454, 14971, 15026, 
    15081, 15136, 15195, 15258, 15313, 15368, 15423, 15478, 15039, 
    15094, 15149, 15204, 15263, 15314, 15369, 15428, 15487, 15546
    ), packetOkSinr = c(0.99999999314881, 0.9999999998736, 0.99999999996428, 
    0.99999952114066, 0.99991568416005, 3.00628034688444e-08, 
    0.51497487795954, 0.99627877136019, 0, 0.011303253101957, 
    0.99999999314881, 0.99999999987726, 0.99999999996428, 0.99999952114066, 
    0.99991568416005, 3.00628034688444e-08, 0.51530974419663, 
    0.99627877136019, 0, 0.011269851265775, 0.9999999931708, 
    0.99999999985986, 0.99999999996428, 0.99999952599145, 0.99991770469509, 
    0, 0.45861812482641, 0.99629897628155, 0, 0.011403119534097, 
    0.99999999321568, 0.99999999985437, 0.99999999996519, 0.99999954639936, 
    0.99618434878558, 0, 0.010513119213425, 0.99641022914441, 
    0.00801687746446111, 0.012011103529927, 0.9999999931195, 
    0.99999999871861, 0.99999999996428, 0.99999951617905, 0.99991456738049, 
    2.6525298291169e-08, 0.51328066587104, 0.9999212220316, 0, 
    0.010777054258914, 0.9999999931708, 0.99999999985986, 0.99999999996428, 
    0.99999952718674, 0.99991812902805, 0, 0.45929307038653, 
    0.99631228046814, 0, 0.011436292559188, 0.99999999317629, 
    0.99999999985986, 0.99999999996428, 0.99999952718674, 0.99991812902805, 
    0, 0.45929307038653, 0.99631228046814, 0, 0.011436292559188, 
    0.99999999321568, 0.99999999985437, 0.99999999996519, 0.99999954527918, 
    0.99618434878558, 0, 0.010513119213425, 0.99641022914441, 
    0.00821047996950475, 0.012011103529927, 0.99999999319919, 
    0.99999999985345, 0.99999999996519, 0.99999954188106, 0.99991896371849, 
    0, 0.010410830482692, 0.996384831822, 9.12484388049251e-09, 
    0.011877185067536, 0.99999999879646, 0.9999999998562, 0.99999999998077, 
    0.99992756868677, 0.9962208785486, 0, 0.010971897073662, 
    0.93214999078663, 0.92943956665979, 2.64925478221656e-08), 
    snir = c(49.848348091678, 57.698190927109, 60.17669971462, 
    41.529809724535, 31.452202106925, 8.1976890851341, 14.240447804094, 
    24.122884195464, 6.2202875499406, 10.674183333671, 49.848348091678, 
    57.746270018264, 60.17669971462, 41.529809724535, 31.452202106925, 
    8.1976890851341, 14.242292077376, 24.122884195464, 6.2202875499406, 
    10.672962852322, 49.854827699773, 57.49079026127, 60.192705735317, 
    41.549715223147, 31.499301851462, 6.2853718719014, 13.937702343688, 
    24.133388256416, 6.2028757927148, 10.677815810561, 49.867624820879, 
    57.417115267867, 60.224172277442, 41.635752021705, 24.074540962859, 
    6.2847854917092, 10.644529778044, 24.19227425387, 10.537686730745, 
    10.699414795917, 49.84017267426, 53.139646558768, 60.160512118809, 
    41.509660845114, 31.42665220053, 8.1846370024428, 14.231126423354, 
    31.584125885363, 6.2494585568733, 10.654622041348, 49.854827699773, 
    57.49079026127, 60.192705735317, 41.55465351989, 31.509340361646, 
    6.2867464196657, 13.941251828322, 24.140336174865, 4.765718874642, 
    10.679016976694, 49.856439162736, 57.49079026127, 60.196678846453, 
    41.55465351989, 31.509340361646, 6.2867464196657, 13.941251828322, 
    24.140336174865, 4.7666691818074, 10.679016976694, 49.867624820879, 
    57.412299088098, 60.224172277442, 41.630930975211, 24.074540962859, 
    6.279972363168, 10.644529778044, 24.19227425387, 10.546845071479, 
    10.699414795917, 49.862851240855, 57.397787176282, 60.212457625018, 
    41.61637603957, 31.529239767749, 6.2952688513108, 10.640565481982, 
    24.178672145334, 8.0771089950663, 10.694731030907, 53.262541905639, 
    57.43627424514, 61.382796189332, 31.747253311549, 24.093100244121, 
    6.2658701281075, 10.661949889074, 18.495227442305, 18.417839037171, 
    8.1845086722809), ookSnirBer = c(8.8808636558081e-24, 3.2219795637026e-27, 
    2.6468895519653e-28, 3.9807779074715e-20, 1.0849324265615e-15, 
    2.5705217057696e-05, 4.7313805615763e-08, 1.8800438086075e-12, 
    0.00021005320203921, 1.9147343768384e-06, 8.8808636558081e-24, 
    3.0694773489537e-27, 2.6468895519653e-28, 3.9807779074715e-20, 
    1.0849324265615e-15, 2.5705217057696e-05, 4.7223753038869e-08, 
    1.8800438086075e-12, 0.00021005320203921, 1.9171738578051e-06, 
    8.8229427230445e-24, 3.9715925056443e-27, 2.6045198111088e-28, 
    3.9014083702734e-20, 1.0342658440386e-15, 0.00019591630514278, 
    6.4692014108683e-08, 1.8600094209271e-12, 0.0002140067535655, 
    1.9074922485477e-06, 8.7096574467175e-24, 4.2779443633862e-27, 
    2.5231916788231e-28, 3.5761615214425e-20, 1.9750692814982e-12, 
    0.0001960392878411, 1.9748966344895e-06, 1.7515881895994e-12, 
    2.2078334799411e-06, 1.8649940680806e-06, 8.954486301678e-24, 
    3.2021085732779e-25, 2.690441113724e-28, 4.0627628846548e-20, 
    1.1134484878561e-15, 2.6061691733331e-05, 4.777159157954e-08, 
    9.4891388749738e-16, 0.00020359398491544, 1.9542110660398e-06, 
    8.8229427230445e-24, 3.9715925056443e-27, 2.6045198111088e-28, 
    3.8819641115984e-20, 1.0237769828158e-15, 0.00019562832342849, 
    6.4455095380046e-08, 1.8468752030971e-12, 0.0010099091367628, 
    1.9051035165106e-06, 8.8085966897635e-24, 3.9715925056443e-27, 
    2.594108048185e-28, 3.8819641115984e-20, 1.0237769828158e-15, 
    0.00019562832342849, 6.4455095380046e-08, 1.8468752030971e-12, 
    0.0010088638355194, 1.9051035165106e-06, 8.7096574467175e-24, 
    4.2987746909572e-27, 2.5231916788231e-28, 3.593647329558e-20, 
    1.9750692814982e-12, 0.00019705170257492, 1.9748966344895e-06, 
    1.7515881895994e-12, 2.1868296425817e-06, 1.8649940680806e-06, 
    8.7517439682173e-24, 4.3621551072316e-27, 2.553168170837e-28, 
    3.6469582463164e-20, 1.0032983660212e-15, 0.00019385229409318, 
    1.9830820164805e-06, 1.7760568361323e-12, 2.919419915209e-05, 
    1.8741284335866e-06, 2.8285944348148e-25, 4.1960751547207e-27, 
    7.8468215407139e-29, 8.0407329049747e-16, 1.9380328071065e-12, 
    0.00020004849911333, 1.9393279417733e-06, 5.9354475879597e-10, 
    6.4258355913627e-10, 2.6065221215415e-05), ookSnrBer = c(8.8808636558081e-24, 
    3.2219795637026e-27, 2.6468895519653e-28, 3.9807779074715e-20, 
    1.0849324265615e-15, 2.5705217057696e-05, 4.7313805615763e-08, 
    1.8800438086075e-12, 0.00021005320203921, 1.9147343768384e-06, 
    8.8808636558081e-24, 3.0694773489537e-27, 2.6468895519653e-28, 
    3.9807779074715e-20, 1.0849324265615e-15, 2.5705217057696e-05, 
    4.7223753038869e-08, 1.8800438086075e-12, 0.00021005320203921, 
    1.9171738578051e-06, 8.8229427230445e-24, 3.9715925056443e-27, 
    2.6045198111088e-28, 3.9014083702734e-20, 1.0342658440386e-15, 
    0.00019591630514278, 6.4692014108683e-08, 1.8600094209271e-12, 
    0.0002140067535655, 1.9074922485477e-06, 8.7096574467175e-24, 
    4.2779443633862e-27, 2.5231916788231e-28, 3.5761615214425e-20, 
    1.9750692814982e-12, 0.0001960392878411, 1.9748966344895e-06, 
    1.7515881895994e-12, 2.2078334799411e-06, 1.8649940680806e-06, 
    8.954486301678e-24, 3.2021085732779e-25, 2.690441113724e-28, 
    4.0627628846548e-20, 1.1134484878561e-15, 2.6061691733331e-05, 
    4.777159157954e-08, 9.4891388749738e-16, 0.00020359398491544, 
    1.9542110660398e-06, 8.8229427230445e-24, 3.9715925056443e-27, 
    2.6045198111088e-28, 3.8819641115984e-20, 1.0237769828158e-15, 
    0.00019562832342849, 6.4455095380046e-08, 1.8468752030971e-12, 
    0.0010099091367628, 1.9051035165106e-06, 8.8085966897635e-24, 
    3.9715925056443e-27, 2.594108048185e-28, 3.8819641115984e-20, 
    1.0237769828158e-15, 0.00019562832342849, 6.4455095380046e-08, 
    1.8468752030971e-12, 0.0010088638355194, 1.9051035165106e-06, 
    8.7096574467175e-24, 4.2987746909572e-27, 2.5231916788231e-28, 
    3.593647329558e-20, 1.9750692814982e-12, 0.00019705170257492, 
    1.9748966344895e-06, 1.7515881895994e-12, 2.1868296425817e-06, 
    1.8649940680806e-06, 8.7517439682173e-24, 4.3621551072316e-27, 
    2.553168170837e-28, 3.6469582463164e-20, 1.0032983660212e-15, 
    0.00019385229409318, 1.9830820164805e-06, 1.7760568361323e-12, 
    2.919419915209e-05, 1.8741284335866e-06, 2.8285944348148e-25, 
    4.1960751547207e-27, 7.8468215407139e-29, 8.0407329049747e-16, 
    1.9380328071065e-12, 0.00020004849911333, 1.9393279417733e-06, 
    5.9354475879597e-10, 6.4258355913627e-10, 2.6065221215415e-05
    )), class = "data.frame", row.names = c(NA, -100L), .Names = c("run", 
"repetition", "module", "configname", "packetByteLength", "numVehicles", 
"dDistance", "time", "distanceToTx", "headerNoError", "receivedPower_dbm", 
"snr", "frameId", "packetOkSinr", "snir", "ookSnirBer", "ookSnrBer"
))

Die Transformationsfunktion finden

  1. y1 -> y2 Mit dieser Funktion werden die Daten der sekundären y-Achse so transformiert, dass sie gemäß der ersten y-Achse "normalisiert" werden

Geben Sie hier die Bildbeschreibung ein

Transformationsfunktion: f(y1) = 0.025*x + 2.75


  1. y2 -> y1 Mit dieser Funktion werden die Unterbrechungspunkte der ersten y-Achse in die Werte der zweiten y-Achse umgewandelt. Beachten Sie, dass die Achse jetzt vertauscht ist.

Geben Sie hier die Bildbeschreibung ein

Transformationsfunktion: f(y1) = 40*x - 110


Plotten

Beachten Sie, wie die Transformationsfunktionen im ggplotAufruf verwendet werden, um die Daten "on-the-fly" zu transformieren.

ggplot(data=combined_80_8192 %>% filter (time > 270, time < 280), aes(x=time) ) +
  stat_summary(aes(y=receivedPower_dbm ), fun.y=mean, geom="line", colour="black") +
  stat_summary(aes(y=packetOkSinr*40 - 110 ), fun.y=mean, geom="line", colour="black", position = position_dodge(width=10)) +
  scale_x_continuous() +
  scale_y_continuous(breaks = seq(-0,-110,-10), "y_first", sec.axis=sec_axis(~.*0.025+2.75, name="y_second") ) 

Der erste stat_summaryAufruf ist derjenige, der die Basis für die erste y-Achse festlegt. Der zweite stat_summaryAufruf wird aufgerufen, um die Daten zu transformieren. Denken Sie daran, dass alle Daten die erste y-Achse als Basis verwenden. Damit müssen die Daten für die erste y-Achse normalisiert werden. Dazu benutze ich die Transformationsfunktion für die Daten:y=packetOkSinr*40 - 110

Um nun die zweite Achse zu transformieren, verwende ich die entgegengesetzte Funktion innerhalb des scale_y_continuousAufrufs : sec.axis=sec_axis(~.*0.025+2.75, name="y_second").

Geben Sie hier die Bildbeschreibung ein


2
R kann so etwas tun, coef(lm(c(-70, -110) ~ c(1,0)))und coef(lm(c(1,0) ~ c(-70, -110))). Sie könnten eine Hilfsfunktion wie equationise <- function(range = c(-70, -110), target = c(1,0)){ c = coef(lm(target ~ range)) as.formula(substitute(~ a*. + b, list(a=c[[2]], b=c[[1]]))) }
baptiste

Ja, ich weiß ... dachte nur, die Seite wäre intuitiver
user4786271

4

Wir könnten definitiv ein Grundstück mit zwei Y-Achsen unter Verwendung der Basis-R-Funktion erstellen plot.

# pseudo dataset
df <- data.frame(x = seq(1, 1000, 1), y1 = sample.int(100, 1000, replace=T), y2 = sample(50, 1000, replace = T))

# plot first plot 
with(df, plot(y1 ~ x, col = "red"))

# set new plot
par(new = T) 

# plot second plot, but without axis
with(df, plot(y2 ~ x, type = "l", xaxt = "n", yaxt = "n", xlab = "", ylab = ""))

# define y-axis and put y-labs
axis(4)
with(df, mtext("y2", side = 4))

1

Sie können facet_wrap(~ variable, ncol= )eine Variable verwenden, um einen neuen Vergleich zu erstellen. Es ist nicht auf der gleichen Achse, aber es ist ähnlich.


1

Ich erkenne Hadley (und andere) an und stimme ihm zu , dass separate Y-Skalen "grundlegend fehlerhaft" sind. Trotzdem - ich wünschte oft, ich ggplot2hätte die Funktion - insbesondere dann, wenn die Daten im Großformat vorliegen und ich die Daten schnell visualisieren oder überprüfen möchte (dh nur für den persönlichen Gebrauch).

Während die tidyverseBibliothek das Konvertieren der Daten in ein Langformat ziemlich einfach macht (so dass dies facet_grid()funktioniert), ist der Prozess immer noch nicht trivial, wie unten dargestellt:

library(tidyverse)
df.wide %>%
    # Select only the columns you need for the plot.
    select(date, column1, column2, column3) %>%
    # Create an id column – needed in the `gather()` function.
    mutate(id = n()) %>%
    # The `gather()` function converts to long-format. 
    # In which the `type` column will contain three factors (column1, column2, column3),
    # and the `value` column will contain the respective values.
    # All the while we retain the `id` and `date` columns.
    gather(type, value, -id, -date) %>%
    # Create the plot according to your specifications
    ggplot(aes(x = date, y = value)) +
        geom_line() +
        # Create a panel for each `type` (ie. column1, column2, column3).
        # If the types have different scales, you can use the `scales="free"` option.
        facet_grid(type~., scales = "free")

Zum Zeitpunkt des Schreibens unterstützte ggplot2 dies bereits über sec_axis.
Konrad Rudolph

0

Die Antwort von Hadley gibt einen interessanten Hinweis auf Stephen Fews Bericht Dual-Scaled Axes in Graphs. Sind sie jemals die beste Lösung? .

Ich weiß nicht, was das OP mit "Zählungen" und "Rate" bedeutet, aber eine schnelle Suche gibt mir Zählungen und Raten , sodass ich einige Daten über Unfälle im nordamerikanischen Bergsteigen 1 erhalte :

Years<-c("1998","1999","2000","2001","2002","2003","2004")
Persons.Involved<-c(281,248,301,276,295,231,311)
Fatalities<-c(20,17,24,16,34,18,35)
rate=100*Fatalities/Persons.Involved
df<-data.frame(Years=Years,Persons.Involved=Persons.Involved,Fatalities=Fatalities,rate=rate)
print(df,row.names = FALSE)

 Years Persons.Involved Fatalities      rate
  1998              281         20  7.117438
  1999              248         17  6.854839
  2000              301         24  7.973422
  2001              276         16  5.797101
  2002              295         34 11.525424
  2003              231         18  7.792208
  2004              311         35 11.254019

Und dann habe ich versucht, das Diagramm so zu erstellen, wie es nur wenige auf Seite 7 des oben genannten Berichts vorgeschlagen haben (und der Aufforderung von OP gefolgt, die Anzahl als Balkendiagramm und die Raten als Liniendiagramm grafisch darzustellen):

Die andere weniger offensichtliche Lösung, die nur für Zeitreihen funktioniert, besteht darin, alle Wertesätze in eine gemeinsame quantitative Skala umzuwandeln, indem prozentuale Unterschiede zwischen jedem Wert und einem Referenzwert (oder Indexwert) angezeigt werden. Wählen Sie beispielsweise einen bestimmten Zeitpunkt aus, z. B. das erste Intervall, das im Diagramm angezeigt wird, und drücken Sie jeden nachfolgenden Wert als prozentuale Differenz zwischen ihm und dem Anfangswert aus. Dies erfolgt durch Teilen des Werts zu jedem Zeitpunkt durch den Wert für den Anfangszeitpunkt und anschließendes Multiplizieren mit 100, um die Rate in einen Prozentsatz umzuwandeln, wie unten dargestellt.

df2<-df
df2$Persons.Involved <- 100*df$Persons.Involved/df$Persons.Involved[1]
df2$rate <- 100*df$rate/df$rate[1]
plot(ggplot(df2)+
  geom_bar(aes(x=Years,weight=Persons.Involved))+
  geom_line(aes(x=Years,y=rate,group=1))+
  theme(text = element_text(size=30))
  )

Und das ist das Ergebnis: Geben Sie hier die Bildbeschreibung ein

Aber ich mag es nicht sehr und ich kann nicht einfach eine Legende darauf schreiben ...

1 WILLIAMSON, Jed et al. Unfälle im nordamerikanischen Bergsteigen 2005. The Mountaineers Books, 2005.


0

Es scheint eine einfache Frage zu sein, aber es verwirrt um zwei grundlegende Fragen. A) Umgang mit multiskalaren Daten während der Darstellung in einem Vergleichsdiagramm und zweitens B) ob dies ohne einige Faustregelpraktiken der R-Programmierung wie i) Schmelzen von Daten, ii) Facettieren, iii) Hinzufügen möglich ist eine weitere Ebene zu der vorhandenen. Die unten angegebene Lösung erfüllt beide oben genannten Bedingungen, da sie Daten verarbeitet, ohne sie neu skalieren zu müssen, und zweitens werden die genannten Techniken nicht verwendet.

Hier ist das Ergebnis, besser und verbessert

Wenn Sie mehr über diese Methode erfahren möchten, folgen Sie bitte dem unten stehenden Link. So zeichnen Sie ein 2-y-Achsendiagramm mit Balken nebeneinander, ohne die Daten neu zu skalieren


0

Ich habe diese Antwort gefunden mir am meisten half, fand aber heraus, dass es einige Randfälle gab, die nicht richtig zu behandeln schienen, insbesondere negative Fälle, und auch den Fall, dass meine Limits einen Abstand von 0 hatten (was passieren kann, wenn wir greifen unsere Grenzen von max / min Daten). Tests scheinen darauf hinzudeuten, dass dies konsistent funktioniert

Ich benutze den folgenden Code. Hier nehme ich an, wir haben [x1, x2], die wir in [y1, y2] transformieren wollen. Ich habe damit umgegangen, indem ich [x1, x2] in [0,1] (eine ausreichend einfache Transformation) und dann [0,1] in [y1, y2] transformiert habe.

climate <- tibble(
  Month = 1:12,
  Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
  Precip = c(49,36,47,41,53,65,81,89,90,84,73,55)
)
#Set the limits of each axis manually:

  ylim.prim <- c(0, 180)   # in this example, precipitation
ylim.sec <- c(-4, 18)    # in this example, temperature



  b <- diff(ylim.sec)/diff(ylim.prim)

#If all values are the same this messes up the transformation, so we need to modify it here
if(b==0){
  ylim.sec <- c(ylim.sec[1]-1, ylim.sec[2]+1)
  b <- diff(ylim.sec)/diff(ylim.prim)
}
if (is.na(b)){
  ylim.prim <- c(ylim.prim[1]-1, ylim.prim[2]+1)
  b <- diff(ylim.sec)/diff(ylim.prim)
}


ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = ylim.prim[1]+(Temp-ylim.sec[1])/b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~((.-ylim.prim[1]) *b  + ylim.sec[1]), name = "Temperature"), limits = ylim.prim) +
  scale_x_continuous("Month", breaks = 1:12) +
  ggtitle("Climatogram for Oslo (1961-1990)")  

Die wichtigsten Teile hier sind, dass wir die sekundäre y-Achse mit transformieren ~((.-ylim.prim[1]) *b + ylim.sec[1])und dann die Umkehrung auf die tatsächlichen Werte anwenden y = ylim.prim[1]+(Temp-ylim.sec[1])/b). Das sollten wir auch sicherstellen limits = ylim.prim.

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.