Die Ausnahmeleistung in Java und C # lässt zu wünschen übrig.
Als Programmierer zwingt uns dies, die Regel "Ausnahmen sollten selten verursacht werden" einzuhalten, einfach aus praktischen Leistungsgründen.
Als Informatiker sollten wir uns jedoch gegen diesen problematischen Zustand auflehnen. Die Person, die eine Funktion erstellt, hat häufig keine Ahnung, wie oft sie aufgerufen wird oder ob Erfolg oder Misserfolg wahrscheinlicher sind. Nur der Anrufer hat diese Informationen. Der Versuch, Ausnahmen zu vermeiden, führt zu unklaren API-Idomen, bei denen wir in einigen Fällen nur saubere, aber langsame Ausnahmeversionen haben, in anderen Fällen schnelle, aber klobige Rückgabewertfehler, und in anderen Fällen haben wir beide . Der Bibliotheksimplementierer muss möglicherweise zwei Versionen von APIs schreiben und verwalten, und der Aufrufer muss entscheiden, welche von zwei Versionen in jeder Situation verwendet werden soll.
Das ist eine Art Chaos. Wenn Ausnahmen eine bessere Leistung hätten, könnten wir diese klobigen Redewendungen vermeiden und Ausnahmen verwenden, wie sie verwendet werden sollten ... als strukturierte Fehlerrückgabefunktion.
Ich würde mir wirklich wünschen, dass Ausnahmemechanismen mithilfe von Techniken implementiert werden, die näher an den Rückgabewerten liegen, sodass die Leistung näher an den Rückgabewerten liegt. Dies ist der Punkt, auf den wir in leistungsempfindlichem Code zurückgreifen.
Hier ist ein Codebeispiel, das die Ausnahmeleistung mit der Fehlerrückgabewertleistung vergleicht.
öffentliche Klasse TestIt {
int value;
public int getValue() {
return value;
}
public void reset() {
value = 0;
}
public boolean baseline_null(boolean shouldfail, int recurse_depth) {
if (recurse_depth <= 0) {
return shouldfail;
} else {
return baseline_null(shouldfail,recurse_depth-1);
}
}
public boolean retval_error(boolean shouldfail, int recurse_depth) {
if (recurse_depth <= 0) {
if (shouldfail) {
return false;
} else {
return true;
}
} else {
boolean nested_error = retval_error(shouldfail,recurse_depth-1);
if (nested_error) {
return true;
} else {
return false;
}
}
}
public void exception_error(boolean shouldfail, int recurse_depth) throws Exception {
if (recurse_depth <= 0) {
if (shouldfail) {
throw new Exception();
}
} else {
exception_error(shouldfail,recurse_depth-1);
}
}
public static void main(String[] args) {
int i;
long l;
TestIt t = new TestIt();
int failures;
int ITERATION_COUNT = 100000000;
// (0) baseline null workload
for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {
int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);
failures = 0;
long start_time = System.currentTimeMillis();
t.reset();
for (i = 1; i < ITERATION_COUNT; i++) {
boolean shoulderror = (i % EXCEPTION_MOD) == 0;
t.baseline_null(shoulderror,recurse_depth);
}
long elapsed_time = System.currentTimeMillis() - start_time;
System.out.format("baseline: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
recurse_depth, exception_freq, failures,elapsed_time);
}
}
// (1) retval_error
for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {
int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);
failures = 0;
long start_time = System.currentTimeMillis();
t.reset();
for (i = 1; i < ITERATION_COUNT; i++) {
boolean shoulderror = (i % EXCEPTION_MOD) == 0;
if (!t.retval_error(shoulderror,recurse_depth)) {
failures++;
}
}
long elapsed_time = System.currentTimeMillis() - start_time;
System.out.format("retval_error: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
recurse_depth, exception_freq, failures,elapsed_time);
}
}
// (2) exception_error
for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {
int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);
failures = 0;
long start_time = System.currentTimeMillis();
t.reset();
for (i = 1; i < ITERATION_COUNT; i++) {
boolean shoulderror = (i % EXCEPTION_MOD) == 0;
try {
t.exception_error(shoulderror,recurse_depth);
} catch (Exception e) {
failures++;
}
}
long elapsed_time = System.currentTimeMillis() - start_time;
System.out.format("exception_error: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
recurse_depth, exception_freq, failures,elapsed_time);
}
}
}
}}
Und hier sind die Ergebnisse:
baseline: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 683 ms
baseline: recurse_depth 2, exception_freqeuncy 0.25 (0), time elapsed 790 ms
baseline: recurse_depth 2, exception_freqeuncy 0.5 (0), time elapsed 768 ms
baseline: recurse_depth 2, exception_freqeuncy 0.75 (0), time elapsed 749 ms
baseline: recurse_depth 2, exception_freqeuncy 1.0 (0), time elapsed 731 ms
baseline: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 923 ms
baseline: recurse_depth 5, exception_freqeuncy 0.25 (0), time elapsed 971 ms
baseline: recurse_depth 5, exception_freqeuncy 0.5 (0), time elapsed 982 ms
baseline: recurse_depth 5, exception_freqeuncy 0.75 (0), time elapsed 947 ms
baseline: recurse_depth 5, exception_freqeuncy 1.0 (0), time elapsed 937 ms
baseline: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1154 ms
baseline: recurse_depth 8, exception_freqeuncy 0.25 (0), time elapsed 1149 ms
baseline: recurse_depth 8, exception_freqeuncy 0.5 (0), time elapsed 1133 ms
baseline: recurse_depth 8, exception_freqeuncy 0.75 (0), time elapsed 1117 ms
baseline: recurse_depth 8, exception_freqeuncy 1.0 (0), time elapsed 1116 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 742 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.25 (24999999), time elapsed 743 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.5 (49999999), time elapsed 734 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.75 (99999999), time elapsed 723 ms
retval_error: recurse_depth 2, exception_freqeuncy 1.0 (99999999), time elapsed 728 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 920 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.25 (24999999), time elapsed 1121 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.5 (49999999), time elapsed 1037 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.75 (99999999), time elapsed 1141 ms
retval_error: recurse_depth 5, exception_freqeuncy 1.0 (99999999), time elapsed 1130 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1218 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.25 (24999999), time elapsed 1334 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.5 (49999999), time elapsed 1478 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.75 (99999999), time elapsed 1637 ms
retval_error: recurse_depth 8, exception_freqeuncy 1.0 (99999999), time elapsed 1655 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 726 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.25 (24999999), time elapsed 17487 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.5 (49999999), time elapsed 33763 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.75 (99999999), time elapsed 67367 ms
exception_error: recurse_depth 2, exception_freqeuncy 1.0 (99999999), time elapsed 66990 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 924 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.25 (24999999), time elapsed 23775 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.5 (49999999), time elapsed 46326 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.75 (99999999), time elapsed 91707 ms
exception_error: recurse_depth 5, exception_freqeuncy 1.0 (99999999), time elapsed 91580 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1144 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.25 (24999999), time elapsed 30440 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.5 (49999999), time elapsed 59116 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.75 (99999999), time elapsed 116678 ms
exception_error: recurse_depth 8, exception_freqeuncy 1.0 (99999999), time elapsed 116477 ms
Das Überprüfen und Weitergeben von Rückgabewerten führt zu einigen Kosten im Vergleich zum Basis-Null-Aufruf, und diese Kosten sind proportional zur Anruftiefe. Bei einer Aufrufkettentiefe von 8 war die Version zur Überprüfung des Fehlerrückgabewerts etwa 27% langsamer als die Basisversion, bei der die Rückgabewerte nicht überprüft wurden.
Die Ausnahmeleistung ist im Vergleich nicht eine Funktion der Anruftiefe, sondern der Ausnahmefrequenz. Die Verschlechterung mit zunehmender Ausnahmefrequenz ist jedoch viel dramatischer. Bei einer Fehlerhäufigkeit von nur 25% lief der Code 24-mal langsamer. Bei einer Fehlerhäufigkeit von 100% ist die Ausnahmeversion fast 100-mal langsamer.
Dies deutet darauf hin, dass wir bei unseren Ausnahmeimplementierungen möglicherweise die falschen Kompromisse eingehen. Ausnahmen können schneller sein, entweder indem kostspielige Stalk-Walks vermieden werden oder indem sie direkt in eine vom Compiler unterstützte Rückgabewertprüfung umgewandelt werden. Bis sie dies tun, vermeiden wir sie, wenn unser Code schnell ausgeführt werden soll.