Ich habe dieses kleine Stück Haskell geschrieben, um herauszufinden, wie GHC beweist, dass man für natürliche Zahlen nur die geraden halbieren kann:
{-# LANGUAGE DataKinds, GADTs, KindSignatures, TypeFamilies #-}
module Nat where
data Nat = Z | S Nat
data Parity = Even | Odd
type family Flip (x :: Parity) :: Parity where
Flip Even = Odd
Flip Odd = Even
data ParNat :: Parity -> * where
PZ :: ParNat Even
PS :: (x ~ Flip y, y ~ Flip x) => ParNat x -> ParNat (Flip x)
halve :: ParNat Even -> Nat
halve PZ = Z
halve (PS a) = helper a
where helper :: ParNat Odd -> Nat
helper (PS b) = S (halve b)
Die relevanten Teile des Kerns werden:
Nat.$WPZ :: Nat.ParNat 'Nat.Even
Nat.$WPZ = Nat.PZ @ 'Nat.Even @~ <'Nat.Even>_N
Nat.$WPS
:: forall (x_apH :: Nat.Parity) (y_apI :: Nat.Parity).
(x_apH ~ Nat.Flip y_apI, y_apI ~ Nat.Flip x_apH) =>
Nat.ParNat x_apH -> Nat.ParNat (Nat.Flip x_apH)
Nat.$WPS =
\ (@ (x_apH :: Nat.Parity))
(@ (y_apI :: Nat.Parity))
(dt_aqR :: x_apH ~ Nat.Flip y_apI)
(dt_aqS :: y_apI ~ Nat.Flip x_apH)
(dt_aqT :: Nat.ParNat x_apH) ->
case dt_aqR of _ { GHC.Types.Eq# dt_aqU ->
case dt_aqS of _ { GHC.Types.Eq# dt_aqV ->
Nat.PS
@ (Nat.Flip x_apH)
@ x_apH
@ y_apI
@~ <Nat.Flip x_apH>_N
@~ dt_aqU
@~ dt_aqV
dt_aqT
}
}
Rec {
Nat.halve :: Nat.ParNat 'Nat.Even -> Nat.Nat
Nat.halve =
\ (ds_dJB :: Nat.ParNat 'Nat.Even) ->
case ds_dJB of _ {
Nat.PZ dt_dKD -> Nat.Z;
Nat.PS @ x_aIX @ y_aIY dt_dK6 dt1_dK7 dt2_dK8 a_apK ->
case a_apK
`cast` ((Nat.ParNat
(dt1_dK7
; (Nat.Flip (dt2_dK8 ; Sym dt_dK6))_N
; Nat.TFCo:R:Flip[0]))_R
:: Nat.ParNat x_aIX ~# Nat.ParNat 'Nat.Odd)
of _
{ Nat.PS @ x1_aJ4 @ y1_aJ5 dt3_dKa dt4_dKb dt5_dKc b_apM ->
Nat.S
(Nat.halve
(b_apM
`cast` ((Nat.ParNat
(dt4_dKb
; (Nat.Flip
(dt5_dKc
; Sym dt3_dKa
; Sym Nat.TFCo:R:Flip[0]
; (Nat.Flip (dt_dK6 ; Sym dt2_dK8))_N
; Sym dt1_dK7))_N
; Sym dt_dK6))_R
:: Nat.ParNat x1_aJ4 ~# Nat.ParNat 'Nat.Even)))
}
}
end Rec }
Ich kenne den allgemeinen Ablauf des Castings der Typen durch Instanzen der Flip-Typfamilie, aber es gibt einige Dinge, denen ich nicht vollständig folgen kann:
- Was bedeutet das
@~ <Nat.Flip x_apH>_N
? ist es die Flip-Instanz für x? Wie unterscheidet sich das von@ (Nat.Flip x_apH)
? Ich interessiere mich sowohl für< >
als auch_N
In Bezug auf die erste Besetzung in halve
:
- Was
dt_dK6
,dt1_dK7
unddt2_dK8
steht für? Ich verstehe, dass es sich um eine Art Äquivalenzbeweis handelt, aber welches ist welches? - Ich verstehe, dass dies
Sym
durch eine Äquivalenz rückwärts verläuft - Was machen die
;
? Werden die Äquivalenznachweise nur nacheinander angewendet? - Was sind das
_N
und_R
Suffixe? - Sind
TFCo:R:Flip[0]
undTFCo:R:Flip[1]
die Instanzen von Flip?