Ich habe den Fehler gefunden.
.NET führt Folgendes aus clr\src\vm\comnumber.cpp
:
DoubleToNumber(value, DOUBLE_PRECISION, &number);
if (number.scale == (int) SCALE_NAN) {
gc.refRetVal = gc.numfmt->sNaN;
goto lExit;
}
if (number.scale == SCALE_INF) {
gc.refRetVal = (number.sign? gc.numfmt->sNegativeInfinity: gc.numfmt->sPositiveInfinity);
goto lExit;
}
NumberToDouble(&number, &dTest);
if (dTest == value) {
gc.refRetVal = NumberToString(&number, 'G', DOUBLE_PRECISION, gc.numfmt);
goto lExit;
}
DoubleToNumber(value, 17, &number);
DoubleToNumber
ist ziemlich einfach - es ruft nur auf _ecvt
, was in der C-Laufzeit ist:
void DoubleToNumber(double value, int precision, NUMBER* number)
{
WRAPPER_CONTRACT
_ASSERTE(number != NULL);
number->precision = precision;
if (((FPDOUBLE*)&value)->exp == 0x7FF) {
number->scale = (((FPDOUBLE*)&value)->mantLo || ((FPDOUBLE*)&value)->mantHi) ? SCALE_NAN: SCALE_INF;
number->sign = ((FPDOUBLE*)&value)->sign;
number->digits[0] = 0;
}
else {
char* src = _ecvt(value, precision, &number->scale, &number->sign);
wchar* dst = number->digits;
if (*src != '0') {
while (*src) *dst++ = *src++;
}
*dst = 0;
}
}
Es stellt sich heraus, dass _ecvt
die Zeichenfolge zurückgegeben wird 845512408225570
.
Beachten Sie die nachfolgende Null? Es stellt sich heraus, dass das den Unterschied macht!
Wenn die Null vorhanden ist, wird das Ergebnis tatsächlich auf0.84551240822557006
Ihre ursprüngliche Zahl zurückgeführt. Es wird also gleich verglichen, und daher werden nur 15 Ziffern zurückgegeben.
Wenn ich jedoch die Zeichenfolge bei dieser Null auf kürze 84551240822557
, erhalte ich zurück 0.84551240822556994
, was nicht Ihre ursprüngliche Nummer ist, und daher würde es 17 Ziffern zurückgeben.
Beweis: Führen Sie den folgenden 64-Bit-Code (von dem ich den größten Teil aus der Microsoft Shared Source CLI 2.0 extrahiert habe) in Ihrem Debugger aus und überprüfen Sie ihn v
am Ende von main
:
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define min(a, b) (((a) < (b)) ? (a) : (b))
struct NUMBER {
int precision;
int scale;
int sign;
wchar_t digits[20 + 1];
NUMBER() : precision(0), scale(0), sign(0) {}
};
#define I64(x) x##LL
static const unsigned long long rgval64Power10[] = {
// powers of 10
/*1*/ I64(0xa000000000000000),
/*2*/ I64(0xc800000000000000),
/*3*/ I64(0xfa00000000000000),
/*4*/ I64(0x9c40000000000000),
/*5*/ I64(0xc350000000000000),
/*6*/ I64(0xf424000000000000),
/*7*/ I64(0x9896800000000000),
/*8*/ I64(0xbebc200000000000),
/*9*/ I64(0xee6b280000000000),
/*10*/ I64(0x9502f90000000000),
/*11*/ I64(0xba43b74000000000),
/*12*/ I64(0xe8d4a51000000000),
/*13*/ I64(0x9184e72a00000000),
/*14*/ I64(0xb5e620f480000000),
/*15*/ I64(0xe35fa931a0000000),
// powers of 0.1
/*1*/ I64(0xcccccccccccccccd),
/*2*/ I64(0xa3d70a3d70a3d70b),
/*3*/ I64(0x83126e978d4fdf3c),
/*4*/ I64(0xd1b71758e219652e),
/*5*/ I64(0xa7c5ac471b478425),
/*6*/ I64(0x8637bd05af6c69b7),
/*7*/ I64(0xd6bf94d5e57a42be),
/*8*/ I64(0xabcc77118461ceff),
/*9*/ I64(0x89705f4136b4a599),
/*10*/ I64(0xdbe6fecebdedd5c2),
/*11*/ I64(0xafebff0bcb24ab02),
/*12*/ I64(0x8cbccc096f5088cf),
/*13*/ I64(0xe12e13424bb40e18),
/*14*/ I64(0xb424dc35095cd813),
/*15*/ I64(0x901d7cf73ab0acdc),
};
static const signed char rgexp64Power10[] = {
// exponents for both powers of 10 and 0.1
/*1*/ 4,
/*2*/ 7,
/*3*/ 10,
/*4*/ 14,
/*5*/ 17,
/*6*/ 20,
/*7*/ 24,
/*8*/ 27,
/*9*/ 30,
/*10*/ 34,
/*11*/ 37,
/*12*/ 40,
/*13*/ 44,
/*14*/ 47,
/*15*/ 50,
};
static const unsigned long long rgval64Power10By16[] = {
// powers of 10^16
/*1*/ I64(0x8e1bc9bf04000000),
/*2*/ I64(0x9dc5ada82b70b59e),
/*3*/ I64(0xaf298d050e4395d6),
/*4*/ I64(0xc2781f49ffcfa6d4),
/*5*/ I64(0xd7e77a8f87daf7fa),
/*6*/ I64(0xefb3ab16c59b14a0),
/*7*/ I64(0x850fadc09923329c),
/*8*/ I64(0x93ba47c980e98cde),
/*9*/ I64(0xa402b9c5a8d3a6e6),
/*10*/ I64(0xb616a12b7fe617a8),
/*11*/ I64(0xca28a291859bbf90),
/*12*/ I64(0xe070f78d39275566),
/*13*/ I64(0xf92e0c3537826140),
/*14*/ I64(0x8a5296ffe33cc92c),
/*15*/ I64(0x9991a6f3d6bf1762),
/*16*/ I64(0xaa7eebfb9df9de8a),
/*17*/ I64(0xbd49d14aa79dbc7e),
/*18*/ I64(0xd226fc195c6a2f88),
/*19*/ I64(0xe950df20247c83f8),
/*20*/ I64(0x81842f29f2cce373),
/*21*/ I64(0x8fcac257558ee4e2),
// powers of 0.1^16
/*1*/ I64(0xe69594bec44de160),
/*2*/ I64(0xcfb11ead453994c3),
/*3*/ I64(0xbb127c53b17ec165),
/*4*/ I64(0xa87fea27a539e9b3),
/*5*/ I64(0x97c560ba6b0919b5),
/*6*/ I64(0x88b402f7fd7553ab),
/*7*/ I64(0xf64335bcf065d3a0),
/*8*/ I64(0xddd0467c64bce4c4),
/*9*/ I64(0xc7caba6e7c5382ed),
/*10*/ I64(0xb3f4e093db73a0b7),
/*11*/ I64(0xa21727db38cb0053),
/*12*/ I64(0x91ff83775423cc29),
/*13*/ I64(0x8380dea93da4bc82),
/*14*/ I64(0xece53cec4a314f00),
/*15*/ I64(0xd5605fcdcf32e217),
/*16*/ I64(0xc0314325637a1978),
/*17*/ I64(0xad1c8eab5ee43ba2),
/*18*/ I64(0x9becce62836ac5b0),
/*19*/ I64(0x8c71dcd9ba0b495c),
/*20*/ I64(0xfd00b89747823938),
/*21*/ I64(0xe3e27a444d8d991a),
};
static const signed short rgexp64Power10By16[] = {
// exponents for both powers of 10^16 and 0.1^16
/*1*/ 54,
/*2*/ 107,
/*3*/ 160,
/*4*/ 213,
/*5*/ 266,
/*6*/ 319,
/*7*/ 373,
/*8*/ 426,
/*9*/ 479,
/*10*/ 532,
/*11*/ 585,
/*12*/ 638,
/*13*/ 691,
/*14*/ 745,
/*15*/ 798,
/*16*/ 851,
/*17*/ 904,
/*18*/ 957,
/*19*/ 1010,
/*20*/ 1064,
/*21*/ 1117,
};
static unsigned DigitsToInt(wchar_t* p, int count)
{
wchar_t* end = p + count;
unsigned res = *p - '0';
for ( p = p + 1; p < end; p++) {
res = 10 * res + *p - '0';
}
return res;
}
#define Mul32x32To64(a, b) ((unsigned long long)((unsigned long)(a)) * (unsigned long long)((unsigned long)(b)))
static unsigned long long Mul64Lossy(unsigned long long a, unsigned long long b, int* pexp)
{
// it's ok to losse some precision here - Mul64 will be called
// at most twice during the conversion, so the error won't propagate
// to any of the 53 significant bits of the result
unsigned long long val = Mul32x32To64(a >> 32, b >> 32) +
(Mul32x32To64(a >> 32, b) >> 32) +
(Mul32x32To64(a, b >> 32) >> 32);
// normalize
if ((val & I64(0x8000000000000000)) == 0) { val <<= 1; *pexp -= 1; }
return val;
}
void NumberToDouble(NUMBER* number, double* value)
{
unsigned long long val;
int exp;
wchar_t* src = number->digits;
int remaining;
int total;
int count;
int scale;
int absscale;
int index;
total = (int)wcslen(src);
remaining = total;
// skip the leading zeros
while (*src == '0') {
remaining--;
src++;
}
if (remaining == 0) {
*value = 0;
goto done;
}
count = min(remaining, 9);
remaining -= count;
val = DigitsToInt(src, count);
if (remaining > 0) {
count = min(remaining, 9);
remaining -= count;
// get the denormalized power of 10
unsigned long mult = (unsigned long)(rgval64Power10[count-1] >> (64 - rgexp64Power10[count-1]));
val = Mul32x32To64(val, mult) + DigitsToInt(src+9, count);
}
scale = number->scale - (total - remaining);
absscale = abs(scale);
if (absscale >= 22 * 16) {
// overflow / underflow
*(unsigned long long*)value = (scale > 0) ? I64(0x7FF0000000000000) : 0;
goto done;
}
exp = 64;
// normalize the mantisa
if ((val & I64(0xFFFFFFFF00000000)) == 0) { val <<= 32; exp -= 32; }
if ((val & I64(0xFFFF000000000000)) == 0) { val <<= 16; exp -= 16; }
if ((val & I64(0xFF00000000000000)) == 0) { val <<= 8; exp -= 8; }
if ((val & I64(0xF000000000000000)) == 0) { val <<= 4; exp -= 4; }
if ((val & I64(0xC000000000000000)) == 0) { val <<= 2; exp -= 2; }
if ((val & I64(0x8000000000000000)) == 0) { val <<= 1; exp -= 1; }
index = absscale & 15;
if (index) {
int multexp = rgexp64Power10[index-1];
// the exponents are shared between the inverted and regular table
exp += (scale < 0) ? (-multexp + 1) : multexp;
unsigned long long multval = rgval64Power10[index + ((scale < 0) ? 15 : 0) - 1];
val = Mul64Lossy(val, multval, &exp);
}
index = absscale >> 4;
if (index) {
int multexp = rgexp64Power10By16[index-1];
// the exponents are shared between the inverted and regular table
exp += (scale < 0) ? (-multexp + 1) : multexp;
unsigned long long multval = rgval64Power10By16[index + ((scale < 0) ? 21 : 0) - 1];
val = Mul64Lossy(val, multval, &exp);
}
// round & scale down
if ((unsigned long)val & (1 << 10))
{
// IEEE round to even
unsigned long long tmp = val + ((1 << 10) - 1) + (((unsigned long)val >> 11) & 1);
if (tmp < val) {
// overflow
tmp = (tmp >> 1) | I64(0x8000000000000000);
exp += 1;
}
val = tmp;
}
val >>= 11;
exp += 0x3FE;
if (exp <= 0) {
if (exp <= -52) {
// underflow
val = 0;
}
else {
// denormalized
val >>= (-exp+1);
}
}
else
if (exp >= 0x7FF) {
// overflow
val = I64(0x7FF0000000000000);
}
else {
val = ((unsigned long long)exp << 52) + (val & I64(0x000FFFFFFFFFFFFF));
}
*(unsigned long long*)value = val;
done:
if (number->sign) *(unsigned long long*)value |= I64(0x8000000000000000);
}
int main()
{
NUMBER number;
number.precision = 15;
double v = 0.84551240822557006;
char *src = _ecvt(v, number.precision, &number.scale, &number.sign);
int truncate = 0; // change to 1 if you want to truncate
if (truncate)
{
while (*src && src[strlen(src) - 1] == '0')
{
src[strlen(src) - 1] = 0;
}
}
wchar_t* dst = number.digits;
if (*src != '0') {
while (*src) *dst++ = *src++;
}
*dst++ = 0;
NumberToDouble(&number, &v);
return 0;
}