Ignorieren Sie dies, wenn Jaimes Antwort für Ihren Fall funktioniert. Wenn dies nicht der Fall ist, sollten Sie nach dieser Antwort Folgendes in Betracht ziehen , um die genauen Werte des 1. und 3. Quartils zu ermitteln:
samples = sorted([28, 12, 8, 27, 16, 31, 14, 13, 19, 1, 1, 22, 13])
def find_median(sorted_list):
indices = []
list_size = len(sorted_list)
median = 0
if list_size % 2 == 0:
indices.append(int(list_size / 2) - 1)
indices.append(int(list_size / 2))
median = (sorted_list[indices[0]] + sorted_list[indices[1]]) / 2
pass
else:
indices.append(int(list_size / 2))
median = sorted_list[indices[0]]
pass
return median, indices
pass
median, median_indices = find_median(samples)
Q1, Q1_indices = find_median(samples[:median_indices[0]])
Q2, Q2_indices = find_median(samples[median_indices[-1] + 1:])
IQR = Q3 - Q1
quartiles = [Q1, median, Q2]
Code aus der Antwort, auf die verwiesen wird.