Obwohl dies eine etwas alte Frage ist, dachte ich, ich würde jedem, der darüber stolpert, eine praktische Antwort geben.
Angenommen, Sie erhalten Ihre Eingabedaten für Ihre Verbindungen als Liste von Tupeln wie folgt:
[('A', 'B'), ('B', 'C'), ('B', 'D'), ('C', 'D'), ('E', 'F'), ('F', 'C')]
Die Datenstruktur, die ich für Diagramme in Python als am nützlichsten und effizientesten befunden habe, ist ein Diktat von Mengen . Dies wird die zugrunde liegende Struktur für unsere Graph
Klasse sein. Sie müssen auch wissen, ob diese Verbindungen Bögen (gerichtet, in eine Richtung verbunden) oder Kanten (ungerichtet, in beide Richtungen verbunden) sind. Wir werden das behandeln, indem wir directed
der Graph.__init__
Methode einen Parameter hinzufügen . Wir werden auch einige andere hilfreiche Methoden hinzufügen.
import pprint
from collections import defaultdict
class Graph(object):
""" Graph data structure, undirected by default. """
def __init__(self, connections, directed=False):
self._graph = defaultdict(set)
self._directed = directed
self.add_connections(connections)
def add_connections(self, connections):
""" Add connections (list of tuple pairs) to graph """
for node1, node2 in connections:
self.add(node1, node2)
def add(self, node1, node2):
""" Add connection between node1 and node2 """
self._graph[node1].add(node2)
if not self._directed:
self._graph[node2].add(node1)
def remove(self, node):
""" Remove all references to node """
for n, cxns in self._graph.items(): # python3: items(); python2: iteritems()
try:
cxns.remove(node)
except KeyError:
pass
try:
del self._graph[node]
except KeyError:
pass
def is_connected(self, node1, node2):
""" Is node1 directly connected to node2 """
return node1 in self._graph and node2 in self._graph[node1]
def find_path(self, node1, node2, path=[]):
""" Find any path between node1 and node2 (may not be shortest) """
path = path + [node1]
if node1 == node2:
return path
if node1 not in self._graph:
return None
for node in self._graph[node1]:
if node not in path:
new_path = self.find_path(node, node2, path)
if new_path:
return new_path
return None
def __str__(self):
return '{}({})'.format(self.__class__.__name__, dict(self._graph))
Ich werde es als "Übung für den Leser" belassen, eine find_shortest_path
und andere Methoden zu erstellen .
Lassen Sie uns dies in Aktion sehen ...
>>> connections = [('A', 'B'), ('B', 'C'), ('B', 'D'),
('C', 'D'), ('E', 'F'), ('F', 'C')]
>>> g = Graph(connections, directed=True)
>>> pretty_print = pprint.PrettyPrinter()
>>> pretty_print.pprint(g._graph)
{'A': {'B'},
'B': {'D', 'C'},
'C': {'D'},
'E': {'F'},
'F': {'C'}}
>>> g = Graph(connections) # undirected
>>> pretty_print = pprint.PrettyPrinter()
>>> pretty_print.pprint(g._graph)
{'A': {'B'},
'B': {'D', 'A', 'C'},
'C': {'D', 'F', 'B'},
'D': {'C', 'B'},
'E': {'F'},
'F': {'E', 'C'}}
>>> g.add('E', 'D')
>>> pretty_print.pprint(g._graph)
{'A': {'B'},
'B': {'D', 'A', 'C'},
'C': {'D', 'F', 'B'},
'D': {'C', 'E', 'B'},
'E': {'D', 'F'},
'F': {'E', 'C'}}
>>> g.remove('A')
>>> pretty_print.pprint(g._graph)
{'B': {'D', 'C'},
'C': {'D', 'F', 'B'},
'D': {'C', 'E', 'B'},
'E': {'D', 'F'},
'F': {'E', 'C'}}
>>> g.add('G', 'B')
>>> pretty_print.pprint(g._graph)
{'B': {'D', 'G', 'C'},
'C': {'D', 'F', 'B'},
'D': {'C', 'E', 'B'},
'E': {'D', 'F'},
'F': {'E', 'C'},
'G': {'B'}}
>>> g.find_path('G', 'E')
['G', 'B', 'D', 'C', 'F', 'E']