Aktualisieren
Die scipy.stats.mode
Funktion wurde seit diesem Beitrag erheblich optimiert und wäre die empfohlene Methode
Alte Antwort
Dies ist ein heikles Problem, da es nicht viel gibt, um den Modus entlang einer Achse zu berechnen. Die Lösung ist einfach für 1-D-Arrays, wo numpy.bincount
es praktisch ist, zusammen numpy.unique
mit dem return_counts
Argument as True
. Die häufigste n-dimensionale Funktion, die ich sehe, ist scipy.stats.mode, obwohl sie unerschwinglich langsam ist - insbesondere für große Arrays mit vielen eindeutigen Werten. Als Lösung habe ich diese Funktion entwickelt und benutze sie stark:
import numpy
def mode(ndarray, axis=0):
ndarray = numpy.asarray(ndarray)
ndim = ndarray.ndim
if ndarray.size == 1:
return (ndarray[0], 1)
elif ndarray.size == 0:
raise Exception('Cannot compute mode on empty array')
try:
axis = range(ndarray.ndim)[axis]
except:
raise Exception('Axis "{}" incompatible with the {}-dimension array'.format(axis, ndim))
if all([ndim == 1,
int(numpy.__version__.split('.')[0]) >= 1,
int(numpy.__version__.split('.')[1]) >= 9]):
modals, counts = numpy.unique(ndarray, return_counts=True)
index = numpy.argmax(counts)
return modals[index], counts[index]
sort = numpy.sort(ndarray, axis=axis)
transpose = numpy.roll(numpy.arange(ndim)[::-1], axis)
shape = list(sort.shape)
shape[axis] = 1
strides = numpy.concatenate([numpy.zeros(shape=shape, dtype='bool'),
numpy.diff(sort, axis=axis) == 0,
numpy.zeros(shape=shape, dtype='bool')],
axis=axis).transpose(transpose).ravel()
counts = numpy.cumsum(strides)
counts[~strides] = numpy.concatenate([[0], numpy.diff(counts[~strides])])
counts[strides] = 0
shape = numpy.array(sort.shape)
shape[axis] += 1
shape = shape[transpose]
slices = [slice(None)] * ndim
slices[axis] = slice(1, None)
counts = counts.reshape(shape).transpose(transpose)[slices] + 1
slices = [slice(None, i) for i in sort.shape]
del slices[axis]
index = numpy.ogrid[slices]
index.insert(axis, numpy.argmax(counts, axis=axis))
return sort[index], counts[index]
Ergebnis:
In [2]: a = numpy.array([[1, 3, 4, 2, 2, 7],
[5, 2, 2, 1, 4, 1],
[3, 3, 2, 2, 1, 1]])
In [3]: mode(a)
Out[3]: (array([1, 3, 2, 2, 1, 1]), array([1, 2, 2, 2, 1, 2]))
Einige Benchmarks:
In [4]: import scipy.stats
In [5]: a = numpy.random.randint(1,10,(1000,1000))
In [6]: %timeit scipy.stats.mode(a)
10 loops, best of 3: 41.6 ms per loop
In [7]: %timeit mode(a)
10 loops, best of 3: 46.7 ms per loop
In [8]: a = numpy.random.randint(1,500,(1000,1000))
In [9]: %timeit scipy.stats.mode(a)
1 loops, best of 3: 1.01 s per loop
In [10]: %timeit mode(a)
10 loops, best of 3: 80 ms per loop
In [11]: a = numpy.random.random((200,200))
In [12]: %timeit scipy.stats.mode(a)
1 loops, best of 3: 3.26 s per loop
In [13]: %timeit mode(a)
1000 loops, best of 3: 1.75 ms per loop
BEARBEITEN: Bietet mehr Hintergrundinformationen und modifiziert den Ansatz, um speichereffizienter zu sein