Sie haben hier ein paar Möglichkeiten. Eine Liste unterscheidet sich beim Mischen ein wenig von einem Array.
Wie Sie unten sehen können, ist ein Array schneller als eine Liste und ein primitives Array ist schneller als ein Objektarray.
Probendauer
List<Integer> Shuffle: 43133ns
Integer[] Shuffle: 31884ns
int[] Shuffle: 25377ns
Im Folgenden finden Sie drei verschiedene Implementierungen eines Shuffle. Sie sollten Collections.shuffle nur verwenden, wenn Sie mit einer Sammlung arbeiten. Sie müssen Ihr Array nicht in eine Sammlung einbinden, um es zu sortieren. Die folgenden Methoden sind sehr einfach zu implementieren.
ShuffleUtil-Klasse
import java.lang.reflect.Array;
import java.util.*;
public class ShuffleUtil<T> {
private static final int[] EMPTY_INT_ARRAY = new int[0];
private static final int SHUFFLE_THRESHOLD = 5;
private static Random rand;
Hauptmethode
public static void main(String[] args) {
List<Integer> list = null;
Integer[] arr = null;
int[] iarr = null;
long start = 0;
int cycles = 1000;
int n = 1000;
// Shuffle List<Integer>
start = System.nanoTime();
list = range(n);
for (int i = 0; i < cycles; i++) {
ShuffleUtil.shuffle(list);
}
System.out.printf("%22s: %dns%n", "List<Integer> Shuffle", (System.nanoTime() - start) / cycles);
// Shuffle Integer[]
start = System.nanoTime();
arr = toArray(list);
for (int i = 0; i < cycles; i++) {
ShuffleUtil.shuffle(arr);
}
System.out.printf("%22s: %dns%n", "Integer[] Shuffle", (System.nanoTime() - start) / cycles);
// Shuffle int[]
start = System.nanoTime();
iarr = toPrimitive(arr);
for (int i = 0; i < cycles; i++) {
ShuffleUtil.shuffle(iarr);
}
System.out.printf("%22s: %dns%n", "int[] Shuffle", (System.nanoTime() - start) / cycles);
}
Eine generische Liste mischen
// ================================================================
// Shuffle List<T> (java.lang.Collections)
// ================================================================
@SuppressWarnings("unchecked")
public static <T> void shuffle(List<T> list) {
if (rand == null) {
rand = new Random();
}
int size = list.size();
if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
for (int i = size; i > 1; i--) {
swap(list, i - 1, rand.nextInt(i));
}
} else {
Object arr[] = list.toArray();
for (int i = size; i > 1; i--) {
swap(arr, i - 1, rand.nextInt(i));
}
ListIterator<T> it = list.listIterator();
int i = 0;
while (it.hasNext()) {
it.next();
it.set((T) arr[i++]);
}
}
}
public static <T> void swap(List<T> list, int i, int j) {
final List<T> l = list;
l.set(i, l.set(j, l.get(i)));
}
public static <T> List<T> shuffled(List<T> list) {
List<T> copy = copyList(list);
shuffle(copy);
return copy;
}
Ein generisches Array mischen
// ================================================================
// Shuffle T[]
// ================================================================
public static <T> void shuffle(T[] arr) {
if (rand == null) {
rand = new Random();
}
for (int i = arr.length - 1; i > 0; i--) {
swap(arr, i, rand.nextInt(i + 1));
}
}
public static <T> void swap(T[] arr, int i, int j) {
T tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
public static <T> T[] shuffled(T[] arr) {
T[] copy = Arrays.copyOf(arr, arr.length);
shuffle(copy);
return copy;
}
Mischen eines primitiven Arrays
// ================================================================
// Shuffle int[]
// ================================================================
public static <T> void shuffle(int[] arr) {
if (rand == null) {
rand = new Random();
}
for (int i = arr.length - 1; i > 0; i--) {
swap(arr, i, rand.nextInt(i + 1));
}
}
public static <T> void swap(int[] arr, int i, int j) {
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
public static int[] shuffled(int[] arr) {
int[] copy = Arrays.copyOf(arr, arr.length);
shuffle(copy);
return copy;
}
Dienstprogrammmethoden
Einfache Dienstprogrammmethoden zum Kopieren und Konvertieren von Arrays in Listen und umgekehrt.
// ================================================================
// Utility methods
// ================================================================
protected static <T> List<T> copyList(List<T> list) {
List<T> copy = new ArrayList<T>(list.size());
for (T item : list) {
copy.add(item);
}
return copy;
}
protected static int[] toPrimitive(Integer[] array) {
if (array == null) {
return null;
} else if (array.length == 0) {
return EMPTY_INT_ARRAY;
}
final int[] result = new int[array.length];
for (int i = 0; i < array.length; i++) {
result[i] = array[i].intValue();
}
return result;
}
protected static Integer[] toArray(List<Integer> list) {
return toArray(list, Integer.class);
}
protected static <T> T[] toArray(List<T> list, Class<T> clazz) {
@SuppressWarnings("unchecked")
final T[] arr = list.toArray((T[]) Array.newInstance(clazz, list.size()));
return arr;
}
Bereichsklasse
Erzeugt einen Wertebereich, ähnlich der Python- range
Funktion.
// ================================================================
// Range class for generating a range of values.
// ================================================================
protected static List<Integer> range(int n) {
return toList(new Range(n), new ArrayList<Integer>());
}
protected static <T> List<T> toList(Iterable<T> iterable) {
return toList(iterable, new ArrayList<T>());
}
protected static <T> List<T> toList(Iterable<T> iterable, List<T> destination) {
addAll(destination, iterable.iterator());
return destination;
}
protected static <T> void addAll(Collection<T> collection, Iterator<T> iterator) {
while (iterator.hasNext()) {
collection.add(iterator.next());
}
}
private static class Range implements Iterable<Integer> {
private int start;
private int stop;
private int step;
private Range(int n) {
this(0, n, 1);
}
private Range(int start, int stop) {
this(start, stop, 1);
}
private Range(int start, int stop, int step) {
this.start = start;
this.stop = stop;
this.step = step;
}
@Override
public Iterator<Integer> iterator() {
final int min = start;
final int max = stop / step;
return new Iterator<Integer>() {
private int current = min;
@Override
public boolean hasNext() {
return current < max;
}
@Override
public Integer next() {
if (hasNext()) {
return current++ * step;
} else {
throw new NoSuchElementException("Range reached the end");
}
}
@Override
public void remove() {
throw new UnsupportedOperationException("Can't remove values from a Range");
}
};
}
}
}