Beachten Sie, dass dies type(numpy.ndarray)
ein type
Selbst ist und achten Sie auf boolesche und skalare Typen. Seien Sie nicht zu entmutigt, wenn es nicht intuitiv oder einfach ist, es ist zunächst ein Schmerz.
Siehe auch: - https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.dtypes.html
- https://github.com/machinalis/mypy-data/tree/master/numpy- mypy
>>> import numpy as np
>>> np.ndarray
<class 'numpy.ndarray'>
>>> type(np.ndarray)
<class 'type'>
>>> a = np.linspace(1,25)
>>> type(a)
<class 'numpy.ndarray'>
>>> type(a) == type(np.ndarray)
False
>>> type(a) == np.ndarray
True
>>> isinstance(a, np.ndarray)
True
Spaß mit Booleschen:
>>> b = a.astype('int32') == 11
>>> b[0]
False
>>> isinstance(b[0], bool)
False
>>> isinstance(b[0], np.bool)
False
>>> isinstance(b[0], np.bool_)
True
>>> isinstance(b[0], np.bool8)
True
>>> b[0].dtype == np.bool
True
>>> b[0].dtype == bool # python equivalent
True
Weitere Informationen zu Skalartypen finden Sie unter: - https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.scalars.html#arrays-scalars-built-in
>>> x = np.array([1,], dtype=np.uint64)
>>> x[0].dtype
dtype('uint64')
>>> isinstance(x[0], np.uint64)
True
>>> isinstance(x[0], np.integer)
True # generic integer
>>> isinstance(x[0], int)
False # but not a python int in this case
# Try matching the `kind` strings, e.g.
>>> np.dtype('bool').kind
'b'
>>> np.dtype('int64').kind
'i'
>>> np.dtype('float').kind
'f'
>>> np.dtype('half').kind
'f'
# But be weary of matching dtypes
>>> np.integer
<class 'numpy.integer'>
>>> np.dtype(np.integer)
dtype('int64')
>>> x[0].dtype == np.dtype(np.integer)
False
# Down these paths there be dragons:
# the .dtype attribute returns a kind of dtype, not a specific dtype
>>> isinstance(x[0].dtype, np.dtype)
True
>>> isinstance(x[0].dtype, np.uint64)
False
>>> isinstance(x[0].dtype, np.dtype(np.uint64))
Traceback (most recent call last):
File "<console>", line 1, in <module>
TypeError: isinstance() arg 2 must be a type or tuple of types
# yea, don't go there
>>> isinstance(x[0].dtype, np.int_)
False # again, confusing the .dtype with a specific dtype
# Inequalities can be tricky, although they might
# work sometimes, try to avoid these idioms:
>>> x[0].dtype <= np.dtype(np.uint64)
True
>>> x[0].dtype <= np.dtype(np.float)
True
>>> x[0].dtype <= np.dtype(np.half)
False # just when things were going well
>>> x[0].dtype <= np.dtype(np.float16)
False # oh boy
>>> x[0].dtype == np.int
False # ya, no luck here either
>>> x[0].dtype == np.int_
False # or here
>>> x[0].dtype == np.uint64
True # have to end on a good note!