Ich möchte Blender-Made Files direkt in mein hausgemachtes Lisp-Programm analysieren. Ich habe Daten manuell aus .X3D-Dateien gezogen. Ist dies das beste Format, um sich auf das Schreiben eines Parsers zu konzentrieren?
Vielen Dank!
Ich möchte Blender-Made Files direkt in mein hausgemachtes Lisp-Programm analysieren. Ich habe Daten manuell aus .X3D-Dateien gezogen. Ist dies das beste Format, um sich auf das Schreiben eines Parsers zu konzentrieren?
Vielen Dank!
Antworten:
Schreiben Sie einen Exporteur. Nicht wirklich.
Auf diese Weise können Sie genau die Daten ausgeben, die Sie im gewünschten Format benötigen.
Wenn Sie von einem der vorhandenen Plugins ausgehen, ist das eigentlich ganz einfach.
Ich habe immer festgestellt, dass OBJ-Dateien am einfachsten zu analysieren sind, aber sie sind in der Regel groß, weil sie "von Menschen lesbar" sind. Sie sind jedoch öffentlich und standardisiert.
Wenn Sie es brauchen, die Obj-Spezifikation:
Die .obj-Datei ist natürlich am einfachsten zu analysieren. Wenn Sie jedoch etwas Stärkeres (mit Animationen) benötigen, sollten Sie das .md2-Dateiformat verwenden.
Wenn ich einen Teil meines Codes von der High School ausgraben kann, kann ich möglicherweise einen MD2-Loader finden, den ich geschrieben habe.
Das Milkshape (MS3D) -Format war für C ++ und C # recht einfach zu implementieren. Hier ist die Spezifikation, die ich verwendet habe (abgerufen von web.archive.org ):
//
//
//
// MilkShape 3D 1.8.2 File Format Specification
//
//
// This specifcation is written in C style.
//
//
// The data structures are defined in the order as they appear in the .ms3d file.
//
//
//
//
//
//
// max values
//
#define MAX_VERTICES 65534
#define MAX_TRIANGLES 65534
#define MAX_GROUPS 255
#define MAX_MATERIALS 128
#define MAX_JOINTS 128
//
// flags
//
#define SELECTED 1
#define HIDDEN 2
#define SELECTED2 4
#define DIRTY 8
//
// types
//
#ifndef byte
typedef unsigned char byte;
#endif // byte
#ifndef word
typedef unsigned short word;
#endif // word
// force one byte alignment
#include <pshpack1.h>
//
// First comes the header (sizeof(ms3d_header_t) == 14)
//
typedef struct
{
char id[10]; // always "MS3D000000"
int version; // 4
} ms3d_header_t;
//
// Then comes the number of vertices
//
word nNumVertices; // 2 bytes
//
// Then come nNumVertices times ms3d_vertex_t structs (sizeof(ms3d_vertex_t) == 15)
//
typedef struct
{
byte flags; // SELECTED | SELECTED2 | HIDDEN
float vertex[3]; //
char boneId; // -1 = no bone
byte referenceCount;
} ms3d_vertex_t;
//
// Then comes the number of triangles
//
word nNumTriangles; // 2 bytes
//
// Then come nNumTriangles times ms3d_triangle_t structs (sizeof(ms3d_triangle_t) == 70)
//
typedef struct
{
word flags; // SELECTED | SELECTED2 | HIDDEN
word vertexIndices[3]; //
float vertexNormals[3][3]; //
float s[3]; //
float t[3]; //
byte smoothingGroup; // 1 - 32
byte groupIndex; //
} ms3d_triangle_t;
//
// Then comes the number of groups
//
word nNumGroups; // 2 bytes
//
// Then come nNumGroups times groups (the sizeof a group is dynamic, because of triangleIndices is numtriangles long)
//
typedef struct
{
byte flags; // SELECTED | HIDDEN
char name[32]; //
word numtriangles; //
word triangleIndices[numtriangles]; // the groups group the triangles
char materialIndex; // -1 = no material
} ms3d_group_t;
//
// number of materials
//
word nNumMaterials; // 2 bytes
//
// Then come nNumMaterials times ms3d_material_t structs (sizeof(ms3d_material_t) == 361)
//
typedef struct
{
char name[32]; //
float ambient[4]; //
float diffuse[4]; //
float specular[4]; //
float emissive[4]; //
float shininess; // 0.0f - 128.0f
float transparency; // 0.0f - 1.0f
char mode; // 0, 1, 2 is unused now
char texture[128]; // texture.bmp
char alphamap[128]; // alpha.bmp
} ms3d_material_t;
//
// save some keyframer data
//
float fAnimationFPS; // 4 bytes
float fCurrentTime; // 4 bytes
int iTotalFrames; // 4 bytes
//
// number of joints
//
word nNumJoints; // 2 bytes
//
// Then come nNumJoints joints (the size of joints are dynamic, because each joint has a differnt count of keys
//
typedef struct // 16 bytes
{
float time; // time in seconds
float rotation[3]; // x, y, z angles
} ms3d_keyframe_rot_t;
typedef struct // 16 bytes
{
float time; // time in seconds
float position[3]; // local position
} ms3d_keyframe_pos_t;
typedef struct
{
byte flags; // SELECTED | DIRTY
char name[32]; //
char parentName[32]; //
float rotation[3]; // local reference matrix
float position[3];
word numKeyFramesRot; //
word numKeyFramesTrans; //
ms3d_keyframe_rot_t keyFramesRot[numKeyFramesRot]; // local animation matrices
ms3d_keyframe_pos_t keyFramesTrans[numKeyFramesTrans]; // local animation matrices
} ms3d_joint_t;
//
// Then comes the subVersion of the comments part, which is not available in older files
//
int subVersion; // subVersion is = 1, 4 bytes
// Then comes the numer of group comments
unsigned int nNumGroupComments; // 4 bytes
//
// Then come nNumGroupComments times group comments, which are dynamic, because the comment can be any length
//
typedef struct
{
int index; // index of group, material or joint
int commentLength; // length of comment (terminating '\0' is not saved), "MC" has comment length of 2 (not 3)
char comment[commentLength]; // comment
} ms3d_comment_t;
// Then comes the number of material comments
int nNumMaterialComments; // 4 bytes
//
// Then come nNumMaterialComments times material comments, which are dynamic, because the comment can be any length
//
// Then comes the number of joint comments
int nNumJointComments; // 4 bytes
//
// Then come nNumJointComments times joint comments, which are dynamic, because the comment can be any length
//
// Then comes the number of model comments, which is always 0 or 1
int nHasModelComment; // 4 bytes
//
// Then come nHasModelComment times model comments, which are dynamic, because the comment can be any length
//
// Then comes the subversion of the vertex extra information like bone weights, extra etc.
int subVersion; // subVersion is = 2, 4 bytes
// ms3d_vertex_ex_t for subVersion == 1
typedef struct
{
char boneIds[3]; // index of joint or -1, if -1, then that weight is ignored, since subVersion 1
byte weights[3]; // vertex weight ranging from 0 - 255, last weight is computed by 1.0 - sum(all weights), since subVersion 1
// weight[0] is the weight for boneId in ms3d_vertex_t
// weight[1] is the weight for boneIds[0]
// weight[2] is the weight for boneIds[1]
// 1.0f - weight[0] - weight[1] - weight[2] is the weight for boneIds[2]
} ms3d_vertex_ex_t;
// ms3d_vertex_ex_t for subVersion == 2
typedef struct
{
char boneIds[3]; // index of joint or -1, if -1, then that weight is ignored, since subVersion 1
byte weights[3]; // vertex weight ranging from 0 - 100, last weight is computed by 1.0 - sum(all weights), since subVersion 1
// weight[0] is the weight for boneId in ms3d_vertex_t
// weight[1] is the weight for boneIds[0]
// weight[2] is the weight for boneIds[1]
// 1.0f - weight[0] - weight[1] - weight[2] is the weight for boneIds[2]
unsigned int extra; // vertex extra, which can be used as color or anything else, since subVersion 2
} ms3d_vertex_ex_t;
// Then comes nNumVertices times ms3d_vertex_ex_t structs (sizeof(ms3d_vertex_ex_t) == 10)
// Then comes the subversion of the joint extra information like color etc.
int subVersion; // subVersion is = 2, 4 bytes
// ms3d_joint_ex_t for subVersion == 1
typedef struct
{
float color[3]; // joint color, since subVersion == 1
} ms3d_joint_ex_t;
// Then comes nNumJoints times ms3d_joint_ex_t structs (sizeof(ms3d_joint_ex_t) == 12)
// Then comes the subversion of the model extra information
int subVersion; // subVersion is = 1, 4 bytes
// ms3d_model_ex_t for subVersion == 1
typedef struct
{
float jointSize; // joint size, since subVersion == 1
int transparencyMode; // 0 = simple, 1 = depth buffered with alpha ref, 2 = depth sorted triangles, since subVersion == 1
float alphaRef; // alpha reference value for transparencyMode = 1, since subVersion == 1
} ms3d_model_ex_t;
#include <poppack.h>
//
// Mesh Transformation:
//
// 0. Build the transformation matrices from the rotation and position
// 1. Multiply the vertices by the inverse of local reference matrix (lmatrix0)
// 2. then translate the result by (lmatrix0 * keyFramesTrans)
// 3. then multiply the result by (lmatrix0 * keyFramesRot)
//
// For normals skip step 2.
//
//
//
// NOTE: this file format may change in future versions!
//
//
// - Mete Ciragan
//