Als «machine-learning» getaggte Fragen

Methoden und Prinzipien zum Aufbau von "Computersystemen, die sich mit der Erfahrung automatisch verbessern".



5
Die Cross-Entropy-Error-Funktion in neuronalen Netzen
In der MNIST für ML-Anfänger definieren sie Kreuzentropie als Hy′( y) : = - ∑ichy′ichLog( yich)Hy′(y):=−∑iyi′log⁡(yi)H_{y'} (y) := - \sum_{i} y_{i}' \log (y_i) i y ' iyichyiy_i ist der vorhergesagte Wahrscheinlichkeitswert für die Klasse und ist die wahre Wahrscheinlichkeit für diese Klasse.ichiiy′ichyi′y_i' Frage 1 Ist es nicht ein Problem, dass …

15
Python vs R für maschinelles Lernen
Ich fange gerade an, eine Anwendung für maschinelles Lernen für akademische Zwecke zu entwickeln. Ich benutze gerade R und trainiere mich darin. An vielen Orten habe ich jedoch Leute gesehen, die Python verwendet haben . Was nutzen die Menschen in Wissenschaft und Industrie und wie lautet die Empfehlung?

8
Lernrate wählen
Ich arbeite derzeit an der Implementierung von Stochastic Gradient Descent SGDfür neuronale Netze unter Verwendung von Backpropagation, und obwohl ich den Zweck verstehe, habe ich einige Fragen zur Auswahl von Werten für die Lernrate. Bezieht sich die Lernrate auf die Form des Fehlergradienten, da sie die Abstiegsrate vorgibt? Wenn ja, …



5
Warum verwenden Kostenfunktionen den quadratischen Fehler?
Ich fange gerade erst mit maschinellem Lernen an und beschäftige mich bisher mit linearer Regression über eine Variable. Ich habe gelernt, dass es eine Hypothese gibt: hθ(x)=θ0+θ1xhθ(x)=θ0+θ1xh_\theta(x)=\theta_0+\theta_1x Um gute Werte für die Parameter herauszufinden und wir den Unterschied zwischen dem berechneten Ergebnis und dem tatsächlichen Ergebnis unserer Testdaten minimieren möchten. …


8
Datenwissenschaftler gegen Ingenieur des maschinellen Lernens
Was sind die Unterschiede zwischen einem "Data Scientist" und einem "Machine Learning Engineer"? Im letzten Jahr tauchte der "Ingenieur für maschinelles Lernen" häufig in Stellenausschreibungen auf. Dies macht sich insbesondere in San Francisco bemerkbar, wo wohl der Begriff "Data Scientist" entstand. Irgendwann hat "Data Scientist" "Statistiker" überholt, und ich frage …

3
Vorteile der AUC gegenüber der Standardgenauigkeit
Ich fing an, den Bereich unter der Kurve (AUC) zu untersuchen und bin ein wenig verwirrt über seine Nützlichkeit. Als ich zum ersten Mal darauf hingewiesen wurde, schien die AUC ein hervorragendes Maß für die Leistung zu sein. Bei meinen Recherchen habe ich jedoch festgestellt, dass einige behaupten, dass ihr …


8
Open Source-Anomalieerkennung in Python
Problem Hintergrund: Ich arbeite an einem Projekt, das Protokolldateien umfasst, die denen im IT-Überwachungsbereich ähneln (nach meinem besten Verständnis des IT-Bereichs). Diese Protokolldateien sind Zeitreihendaten, die in Hunderten / Tausenden von Zeilen mit verschiedenen Parametern organisiert sind. Jeder Parameter ist numerisch (float) und es gibt einen nicht trivialen / fehlerfreien …


3
RNN vs CNN auf hohem Niveau
Ich habe über die Recurrent Neural Networks (RNN) und ihre Varietäten sowie Convolutional Neural Networks (CNN) und ihre Varietäten nachgedacht. Wären diese beiden Punkte fair zu sagen: Verwenden Sie CNNs, um eine Komponente (z. B. ein Bild) in Unterkomponenten (z. B. ein Objekt in einem Bild, z. B. den Umriss …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.