Ich versuche, das Modul sklearn_pandas zu verwenden, um meine Arbeit in Pandas zu erweitern und einen Zeh in maschinelles Lernen zu tauchen, aber ich habe Probleme mit einem Fehler, den ich nicht wirklich zu beheben verstehe.
Ich habe den folgenden Datensatz für Kaggle durchgearbeitet .
Es handelt sich im Wesentlichen um eine Tabelle ohne Header (1000 Zeilen, 40 Features) mit Gleitkommawerten.
import pandas as pdfrom sklearn import neighbors
from sklearn_pandas import DataFrameMapper, cross_val_score
path_train ="../kaggle/scikitlearn/train.csv"
path_labels ="../kaggle/scikitlearn/trainLabels.csv"
path_test = "../kaggle/scikitlearn/test.csv"
train = pd.read_csv(path_train, header=None)
labels = pd.read_csv(path_labels, header=None)
test = pd.read_csv(path_test, header=None)
mapper_train = DataFrameMapper([(list(train.columns),neighbors.KNeighborsClassifier(n_neighbors=3))])
mapper_train
Ausgabe:
DataFrameMapper(features=[([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39], KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
n_neighbors=3, p=2, weights='uniform'))])
So weit, ist es gut. Aber dann versuche ich die Passform
mapper_train.fit_transform(train, labels)
Ausgabe:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-6-e3897d6db1b5> in <module>()
----> 1 mapper_train.fit_transform(train, labels)
//anaconda/lib/python2.7/site-packages/sklearn/base.pyc in fit_transform(self, X, y, **fit_params)
409 else:
410 # fit method of arity 2 (supervised transformation)
--> 411 return self.fit(X, y, **fit_params).transform(X)
412
413
//anaconda/lib/python2.7/site-packages/sklearn_pandas/__init__.pyc in fit(self, X, y)
116 for columns, transformer in self.features:
117 if transformer is not None:
--> 118 transformer.fit(self._get_col_subset(X, columns))
119 return self
120
TypeError: fit() takes exactly 3 arguments (2 given)`
Was mache ich falsch? Obwohl die Daten in diesem Fall alle gleich sind, plane ich, einen Workflow für Gemische mit kategorialen, nominalen und Gleitkommafeatures zu erstellen, und sklearn_pandas schien logisch zu passen.