Diese Frage wurde vor zwei Wochen in CS.SE veröffentlicht , aber nicht zufriedenstellend beantwortet.
Angenommen, Sie haben das folgende Spiel:
Es gibt unendlich viele Zähler , die alle auf 0 initialisiert sind.
In jedem Schritt wählen Sie einen Zähler und erhöhen seinen Wert um 1.
Leider wird jeder Schritt, jeder Zähler, der einen positiven Wert hat, um 1 dekrementiert.
Außerdem sind die Werte der Zähler durch begrenzt , sodass Sie einen Zähler nicht weiter erhöhen können.
1. Können Sie bei so vielen Schritten, wie Sie möchten, viele positiv bewertete Zähler erreichen?
2. Wie viele positiv bewertete Zähler sind nach Schritten erreichbar?
Für Frage (1) ist hier ein detaillierter Aufbau für positive Zähler:
- Während Sie weniger als Zähler mit dem Wert M haben :
- Erhöhen Sie den minimalen Indexzähler, dessen Wert streng kleiner als .
(Dies muss konvergieren, da die Summe der Zähler alle Schritte erhöht werden muss .)
Lassen .
Während ( )
ein. während ( )
- Inkrement
b.
Nun zur Analyse: Die erste Beobachtung ist, dass die Anzahl der positiven Zähler .
Nun sei der Maximalwert, den c r erreicht hat. Für r = T erhalten wir M ( 1 - 1. Fürr=T+1 erhaltenwirmr(1-1oder im Allgemeinen∀r≥T:mr=M(1-1
Als nächstes bemerken wir, dass, wenn erreicht ist, c 0 = m r ist . Dies bedeutet, dass die Schleife angehalten wird, wenn m r < 1 ist (Integrität geben oder nehmen und Strategien am Ende des Spiels).
Dies gibt uns (1-1
Kann man es besser machen? Kann jemand beweisen, dass dies optimal ist?