Ich führte ein kurzes Clingo-Programm aus, das keine Grafik ohne TFAS meldete, aber es gab einen Fehler. Ich habe es behoben und nun wird überprüft, ob es für n = 8 oder weniger keine Grafik ohne TFAS gibt. Für n = 9 findet es dieses:
is_edge(edge(2,3)) is_edge(edge(1,4)) is_edge(edge(2,4)) is_edge(edge(3,5)) is_edge(edge(4,5)) is_edge(edge(1,6)) is_edge(edge(2,6)) is_edge(edge(3,6)) is_edge(edge(5,6)) is_edge(edge(1,7)) is_edge(edge(4,7)) is_edge(edge(5,7)) is_edge(edge(6,7)) is_edge(edge(1,8)) is_edge(edge(3,8)) is_edge(edge(4,8)) is_edge(edge(5,9)) is_edge(edge(6,9)) is_edge(edge(7,9)) is_edge(edge(2,1)) is_edge(edge(3,1)) is_edge(edge(4,3)) is_edge(edge(5,1)) is_edge(edge(5,2)) is_edge(edge(6,4)) is_edge(edge(7,2)) is_edge(edge(7,3)) is_edge(edge(8,2)) is_edge(edge(8,5)) is_edge(edge(8,6)) is_edge(edge(8,7)) is_edge(edge(9,1)) is_edge(edge(9,2)) is_edge(edge(9,3)) is_edge(edge(9,4)) is_edge(edge(9,8))
Hier ist die (feste) Kodierung
% tfas.asp
#show is_edge/1.
vertex(1..n).
opp_edges(edge(A,B),edge(B,A)) :- vertex(A), vertex(B), A < B.
possible_edge(E1;E2) :- opp_edges(E1,E2).
{is_edge(E1); is_edge(E2)} = 1 :- opp_edges(E1, E2).
ntfas(E) :- possible_edge(E), not is_edge(E).
ntfas(edge(X, X)) :- vertex(X).
tfas(E) | fs(E) :- is_edge(E).
ntfas(E) :- fs(E).
broken :- ntfas(edge(A,C)), tfas(edge(A, B)), tfas(edge(B,C)).
reachable(X, Y) :- fs(edge(X, Y)), is_edge(edge(X, Y)).
reachable(X, Z) :- reachable(X, Y), fs(edge(Y, Z)), is_edge(edge(Y, Z)).
broken :- reachable(X, X).
tfas(E) :- broken, possible_edge(E).
fs(E) :- broken, possible_edge(E).
:- not broken.
Führen Sie es mit clingo -c n=7 tfas.asp
(mit Clingo 4.2.1)
(das n = 7 zeigt Graphen von genau 7 Eckpunkten an)
Es sollte dann und nur dann zufriedenstellend sein, wenn auf 7 Eckpunkten ein Graph ohne TFAS existiert.
Ok, ich habe herausgefunden, welches Diagramm @ G.Bach beschreibt, und es im Clingo codiert (siehe die folgende Clingo-Beschreibung. Es beginnt mit einer Beschreibung des Gadget-Diagramms und wird fortgesetzt, um zu beschreiben, wie Kopien davon zusammengefügt werden, um das Ganze zu erhalten 34-Vertex-Turniergrafik, die G.Bach beschreibt. Ich habe auch die geerdete Grafikbeschreibung angehängt.
Ich fuhr dann fort, Clingo auf diesem Diagramm auszuführen, und es behauptete, ein TFAS mit 241 Kanten gefunden zu haben. Aber ich habe einen Fehler in der Grafikkodierung gemacht. Ich habe den Fehler behoben und Clingo meldet nun Unbefriedigendes (dh es gibt kein TFAS).
Hier ist das Programm zum Auffinden von TFAS in einer Grafik
{tfas(E)} :- is_edge(E).
:- not tfas(edge(A,C)), tfas(edge(A, B)), tfas(edge(B,C)).
reachable(X, Y) :- not tfas(edge(X, Y)), is_edge(edge(X, Y)).
reachable(X, Z) :- reachable(X, Y), not tfas(edge(Y, Z)), is_edge(edge(Y, Z)).
:- reachable(X, X).
tfas_count(N) :- N = #count{tfas(E) : tfas(E)}.
#show tfas/1.
#show tfas_count/1.
Hier ist das (aktualisierte) Programm zum Generieren von G.Bachs Grafik. Ich habe am Ende Indikatoren hinzugefügt, um zu überprüfen, ob es sich bei der Grafik um eine wohlgeformte Turniergrafik handelt:
gadget_vertex(0..7).
gadget_edge(0,1).
gadget_edge(0,2).
gadget_edge(0,3).
gadget_edge(0,4).
gadget_edge(1,2).
gadget_edge(1,3).
gadget_edge(1,6).
gadget_edge(1,7).
gadget_edge(2,3).
gadget_edge(2,4).
gadget_edge(2,5).
gadget_edge(2,7).
gadget_edge(3,4).
gadget_edge(3,5).
gadget_edge(3,6).
gadget_edge(4,1).
gadget_edge(4,5).
gadget_edge(4,6).
gadget_edge(4,7).
gadget_edge(5,0).
gadget_edge(5,1).
gadget_edge(5,6).
gadget_edge(6,0).
gadget_edge(6,2).
gadget_edge(6,7).
gadget_edge(7,0).
gadget_edge(7,3).
gadget_edge(7,5).
special_edge(a;b;c;d;e).
forces(a,b).
forces(b,c).
forcesn(c,a).
nforces(a,d).
forces(d,e).
forces(e,a).
relates(A,B) :- forces(A,B).
relates(A,B) :- nforces(A,B).
relates(A,B) :- forcesn(A,B).
is_se_pair(se_pair(A,B)) :- relates(A,B).
vertex_name(v(V,P)) :- gadget_vertex(V), is_se_pair(P).
matches(from(A), v(5, se_pair(A,B))) :- forces(A,B).
matches(to(A), v(1, se_pair(A,B))) :- forces(A,B).
matches(from(B), v(3, se_pair(A,B))) :- forces(A,B).
matches(to(B), v(6, se_pair(A,B))) :- forces(A,B).
matches(from(A), v(2, se_pair(A,B))) :- nforces(A,B).
matches(to(A), v(7, se_pair(A,B))) :- nforces(A,B).
matches(from(B), v(1, se_pair(A,B))) :- nforces(A,B).
matches(to(B), v(3, se_pair(A,B))) :- nforces(A,B).
matches(from(A), v(7, se_pair(A,B))) :- forcesn(A,B).
matches(to(A), v(3, se_pair(A,B))) :- forcesn(A,B).
matches(from(B), v(5, se_pair(A,B))) :- forcesn(A,B).
matches(to(B), v(1, se_pair(A,B))) :- forcesn(A,B).
same_vertex(V, V) :- vertex_name(V).
same_vertex(M, N; N, M) :- matches(X, M), matches(X, N).
already_found(v(Y,N2)) :- vertex_name(v(X,N1)), same_vertex(v(X,N1),v(Y,N2)), N1 < N2.
vertex(V) :- vertex_name(V), not already_found(V).
named_gadget_edge(edge(v(X,SE),v(Y,SE))) :- gadget_edge(X,Y), is_se_pair(SE).
from_gadget_edge_named(edge(A, B), edge(C,D)) :- named_gadget_edge(edge(C,D)), same_vertex(A,C), same_vertex(B,D), vertex(A), vertex(B).
from_gadget_edge(edge(A,B)) :- from_gadget_edge_named(edge(A,B),edge(C,D)).
is_edge(E) :- from_gadget_edge(E).
is_edge(edge(A,B)) :- vertex(A), vertex(B), A < B, not from_gadget_edge(edge(B,A)).
vertex_count(VN) :- VN = #count{vertex(V) : vertex(V)}.
edge_count(EN) :- EN = #count{is_edge(E) : is_edge(E)}.
#show vertex_count/1.
#show edge_count/1.
bidirectional :- is_edge(edge(A,B)), is_edge(edge(B,A)).
phantom_vertex :- is_edge(edge(A,B)), not vertex(A).
phantom_vertex :- is_edge(edge(A,B)), not vertex(B).
incomplete :- vertex(A), vertex(B), not is_edge(edge(A,B)), not is_edge(edge(B,A)), A != B.
#show bidirectional/0.
#show phantom_vertex/0.
#show incomplete/0.