Erstellen Sie eine Funktion oder ein Programm mit zwei Eingaben:
- Eine Liste von Ganzzahlen, die sortiert werden sollen (weniger als 20 Elemente)
- Eine positive Ganzzahl, die
N
angibt, wie viele Vergleiche Sie durchführen sollten
Die Funktion soll anhalten und die resultierende Liste von ganzen Zahlen nach N
Vergleichen ausgeben . Wenn die Liste vor dem N
Vergleichen vollständig sortiert ist, sollte die sortierte Liste ausgegeben werden.
Der Bubble-Sortier- Algorithmus ist allgemein bekannt, und ich denke, die meisten Leute kennen ihn. Der folgende Pseudocode und die Animation (beide aus dem verlinkten Wikipedia-Artikel) sollten die notwendigen Details enthalten:
procedure bubbleSort( A : list of sortable items )
n = length(A)
repeat
swapped = false
for i = 1 to n-1 inclusive do
/* if this pair is out of order */
if A[i-1] > A[i] then
/* swap them and remember something changed */
swap( A[i-1], A[i] )
swapped = true
end if
end for
until not swapped
end procedure
Die Animation unten zeigt den Fortschritt:
Ein Beispiel (direkt aus dem verknüpften Wikipedia-Artikel entnommen) zeigt die Schritte beim Sortieren der Liste ( 5 1 4 2 8 )
:
Erster Pass
1: ( 5 1 4 2 8 ) -> ( 1 5 4 2 8 ) // Here, algorithm compares the first two elements,
// and swaps since 5 > 1.
2: ( 1 5 4 2 8 ) -> ( 1 4 5 2 8 ) // Swap since 5 > 4
3: ( 1 4 5 2 8 ) -> ( 1 4 2 5 8 ) // Swap since 5 > 2
4: ( 1 4 2 5 8 ) -> ( 1 4 2 5 8 ) // Now, since these elements are already in order
// (8 > 5), algorithm does not swap them.
Zweiter Durchgang
5: ( 1 4 2 5 8 ) -> ( 1 4 2 5 8 )
6: ( 1 4 2 5 8 ) -> ( 1 2 4 5 8 ) // Swap since 4 > 2
7: ( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
8: ( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
Das Array ist jetzt bereits sortiert, der Algorithmus weiß jedoch nicht, ob es vollständig ist. Der Algorithmus benötigt einen ganzen Durchgang ohne Austausch, um zu wissen, dass er sortiert ist.
Dritter Durchgang
9: ( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
10:( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
11:( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
12:( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
Testfälle:
Format: Number of comparisons (N): List after N comparisons
Input list:
5 1 4 2 8
Test cases:
1: 1 5 4 2 8
2: 1 4 5 2 8
3: 1 4 2 5 8
4: 1 4 2 5 8
5: 1 4 2 5 8
6: 1 2 4 5 8
10: 1 2 4 5 8
14: 1 2 4 5 8
Input list:
0: 15 18 -6 18 9 -7 -1 7 19 19 -5 20 19 5 15 -5 3 18 14 19
Test cases:
1: 15 18 -6 18 9 -7 -1 7 19 19 -5 20 19 5 15 -5 3 18 14 19
21: -6 15 18 9 -7 -1 7 18 19 -5 19 19 5 15 -5 3 18 14 19 20
41: -6 9 -7 15 -1 7 18 18 -5 19 19 5 15 -5 3 18 14 19 19 20
60: -6 -7 -1 9 7 15 18 -5 18 19 5 15 -5 3 18 14 19 19 19 20
61: -6 -7 -1 7 9 15 18 -5 18 19 5 15 -5 3 18 14 19 19 19 20
81: -7 -6 -1 7 9 15 -5 18 18 5 15 -5 3 18 14 19 19 19 19 20
119: -7 -6 -1 -5 7 9 15 5 15 -5 3 18 14 18 18 19 19 19 19 20
120: -7 -6 -1 -5 7 9 15 5 15 -5 3 18 14 18 18 19 19 19 19 20
121: -7 -6 -1 -5 7 9 5 15 15 -5 3 18 14 18 18 19 19 19 19 20
122: -7 -6 -1 -5 7 9 5 15 15 -5 3 18 14 18 18 19 19 19 19 20
123: -7 -6 -1 -5 7 9 5 15 -5 15 3 18 14 18 18 19 19 19 19 20
201: -7 -6 -5 -1 -5 3 5 7 9 14 15 15 18 18 18 19 19 19 19 20
221: -7 -6 -5 -5 -1 3 5 7 9 14 15 15 18 18 18 19 19 19 19 20
- Ja, integrierte Algorithmen für die Blasensortierung sind zulässig.
- Nein, Sie können nicht nur positive Ganzzahlen oder eindeutige Ganzzahlen annehmen.
- Die Sortierung muss in der oben beschriebenen Reihenfolge erfolgen. Sie können nicht am Ende der Liste beginnen