Löse das 15 Puzzle (das Schiebepuzzle)


23

Das 15-Puzzle ist ein berühmtes Puzzle, bei dem 15 Kacheln in einem 4x4-Raster verschoben werden. Ausgehend von einer zufälligen Konfiguration besteht das Ziel darin, die Kacheln in der richtigen Reihenfolge anzuordnen. Hier ist ein Beispiel eines gelösten 15-Puzzles:

01 02 03 04
05 06 07 08
09 10 11 12
13 14 15

Jede Bewegung des Puzzles hat die Form Auf / Ab / Links / Rechts. Die Bewegung "Nach unten" besteht darin, die Kachel, die sich über der leeren Stelle befindet, nach unten zu schieben. Der Zug "Rechts" besteht darin, ein Plättchen nach rechts in die leere Stelle zu schieben. So sieht das Board nach den Bewegungen nach unten und rechts aus.

01 02 03 04
05 06 07 08
09 10    11
13 14 15 12

Ziel dieser Herausforderung ist es, ein Programm zu schreiben, das die für die Lösung des 15-Puzzles erforderlichen Züge ausgibt. Der Gewinner ist das Programm, das die fünf Testfälle (siehe unten) in den wenigsten Zügen löst. Die generierte Lösung muss keine perfekte Lösung sein, sondern muss nur besser als die Konkurrenz sein. Für jeden einzelnen Testfall sollte das Programm auf einem vernünftigen Computer nicht länger als zehn Sekunden dauern.

Ihr Programm muss in der Lage sein, jedes lösbare Rätsel zu lösen. Ich benutze nur diese fünf Testfälle als Bewertung.

Ihr Programm erhält das ungelöste Puzzle als Eingabe im Format eines 2D-Arrays. Das 2D-Array kann entsprechend der verwendeten Sprache formatiert oder geändert werden, wenn die Sprache keine 2D-Arrays enthält. Das erste Element des ersten Unterarrays ist die Zahl oben links und das letzte Element des ersten Unterarrays ist die Zahl oben rechts. EIN0 wird der leere Raum sein.

Als Ausgabe sollte Ihr Programm eine Liste der Bewegungen in der Reihenfolge drucken, in der sie ausgeführt werden müssen. Jeder Schritt sollte nummeriert werden, um die Verwendbarkeit der Ergebnisse zu erhöhen.

BEARBEITEN: Basierend auf Kommentaren erlaube ich die Ausgabe entweder in Form von Ab / Auf / etc oder in Form der Koordinaten des zu bewegenden Stücks. Da dies kein Code-Golf ist, ist es das Wichtigste, das Rätsel zu lösen.

Einige andere allgemeine Regeln sehen vor, dass keine externen Quellen verwendet werden dürfen.


Testfall 1

([5,1,7,3],[9,2,11,4],[13,6,15,8],[0,10,14,12])

Beispielausgabe:

1: Down
2: Down
3: Down
4: Left
....

Testfall 2

([2,5,13,12],[1,0,3,15],[9,7,14,6],[10,11,8,4])

Testfall 3

([5,2,4,8],[10,0,3,14],[13,6,11,12],[1,15,9,7])

Testfall 4

([11,4,12,2],[5,10,3,15],[14,1,6,7],[0,9,8,13])

Testfall 5

([5,8,7,11],[1,6,12,2],[9,0,13,10],[14,3,4,15])

2
Muss der Löser mehr als nur diese 5 lösen können?
Matt


1
@Matt Es sollte in der Lage sein, jedes lösbare Rätsel zu lösen. Ich dachte, das wäre impliziert, aber ich werde es expliziter machen.
PhiNotPi

1
Die Art und Weise, wie ich es tue, wäre einfacher, die Bewegungen als einzelne Koordinaten auszugeben. Sie verschieben diese Koordinate auf den einzigen zulässigen Zug (den mit dem Leerzeichen). Ist die Ausgabe auf diese Weise erlaubt?
Ajax333221

@ ajax333221 Ich mag diesen Ausgabestil mehr, da er aus den meisten Sprachen einfacher zu generieren ist.
FUZxxl

Antworten:


4

PyPy, 195 Züge, ~ 12 Sekunden Berechnung

Berechnet mithilfe von IDA * optimale Lösungen mit einer mit linearen Konflikten angereicherten "Walking Distance" -Heuristik. Hier sind die optimalen Lösungen:

 5  1  7  3
 9  2 11  4
13  6 15  8
 0 10 14 12
Down, Down, Down, Left, Up, Up, Up, Left, Down, Down, Down, Left, Up, Up, Up

 2  5 13 12
 1  0  3 15
 9  7 14  6
10 11  8  4
Left, Down, Right, Up, Up, Left, Down, Down, Right, Up, Left, Left, Down, Right, Right, Right, Up, Up, Left, Left, Down, Left, Up, Up, Right, Down, Down, Left, Up, Up, Right, Right, Right, Down, Left, Up, Right, Down, Down, Left, Left, Down, Left, Up, Up, Right, Up, Left

 5  2  4  8
10  0  3 14
13  6 11 12
 1 15  9  7
Left, Up, Up, Right, Right, Down, Left, Up, Left, Left, Down, Down, Right, Right, Up, Left, Left, Down, Down, Right, Right, Up, Right, Up, Left, Left, Up, Right, Down, Down, Right, Down, Left, Left, Up, Up, Left, Up

11  4 12  2
 5 10  3 15
14  1  6  7
 0  9  8 13
Down, Left, Down, Right, Up, Left, Left, Left, Down, Down, Right, Right, Right, Up, Left, Left, Left, Down, Right, Right, Up, Left, Up, Up, Left, Down, Down, Right, Down, Right, Up, Up, Right, Up, Left, Left, Left, Down, Right, Right, Right, Up, Left, Down, Left, Down, Left, Up, Up

 5  8  7 11
 1  6 12  2
 9  0 13 10
14  3  4 15
Up, Right, Down, Left, Left, Down, Left, Up, Right, Up, Right, Down, Down, Right, Up, Up, Left, Left, Left, Down, Down, Down, Right, Right, Up, Right, Down, Left, Up, Left, Up, Left, Down, Right, Down, Left, Up, Right, Down, Right, Up, Up, Left, Left, Up

Und der Code:

import random


class IDAStar:
    def __init__(self, h, neighbours):
        """ Iterative-deepening A* search.

        h(n) is the heuristic that gives the cost between node n and the goal node. It must be admissable, meaning that h(n) MUST NEVER OVERSTIMATE the true cost. Underestimating is fine.

        neighbours(n) is an iterable giving a pair (cost, node, descr) for each node neighbouring n
        IN ASCENDING ORDER OF COST. descr is not used in the computation but can be used to
        efficiently store information about the path edges (e.g. up/left/right/down for grids).
        """

        self.h = h
        self.neighbours = neighbours
        self.FOUND = object()


    def solve(self, root, is_goal, max_cost=None):
        """ Returns the shortest path between the root and a given goal, as well as the total cost.
        If the cost exceeds a given max_cost, the function returns None. If you do not give a
        maximum cost the solver will never return for unsolvable instances."""

        self.is_goal = is_goal
        self.path = [root]
        self.is_in_path = {root}
        self.path_descrs = []
        self.nodes_evaluated = 0

        bound = self.h(root)

        while True:
            t = self._search(0, bound)
            if t is self.FOUND: return self.path, self.path_descrs, bound, self.nodes_evaluated
            if t is None: return None
            bound = t

    def _search(self, g, bound):
        self.nodes_evaluated += 1

        node = self.path[-1]
        f = g + self.h(node)
        if f > bound: return f
        if self.is_goal(node): return self.FOUND

        m = None # Lower bound on cost.
        for cost, n, descr in self.neighbours(node):
            if n in self.is_in_path: continue

            self.path.append(n)
            self.is_in_path.add(n)
            self.path_descrs.append(descr)
            t = self._search(g + cost, bound)

            if t == self.FOUND: return self.FOUND
            if m is None or (t is not None and t < m): m = t

            self.path.pop()
            self.path_descrs.pop()
            self.is_in_path.remove(n)

        return m


def slide_solved_state(n):
    return tuple(i % (n*n) for i in range(1, n*n+1))

def slide_randomize(p, neighbours):
    for _ in range(len(p) ** 2):
        _, p, _ = random.choice(list(neighbours(p)))
    return p

def slide_neighbours(n):
    movelist = []
    for gap in range(n*n):
        x, y = gap % n, gap // n
        moves = []
        if x > 0: moves.append(-1)    # Move the gap left.
        if x < n-1: moves.append(+1)  # Move the gap right.
        if y > 0: moves.append(-n)    # Move the gap up.
        if y < n-1: moves.append(+n)  # Move the gap down.
        movelist.append(moves)

    def neighbours(p):
        gap = p.index(0)
        l = list(p)

        for m in movelist[gap]:
            l[gap] = l[gap + m]
            l[gap + m] = 0
            yield (1, tuple(l), (l[gap], m))
            l[gap + m] = l[gap]
            l[gap] = 0

    return neighbours

def slide_print(p):
    n = int(round(len(p) ** 0.5))
    l = len(str(n*n))
    for i in range(0, len(p), n):
        print(" ".join("{:>{}}".format(x, l) for x in p[i:i+n]))

def encode_cfg(cfg, n):
    r = 0
    b = n.bit_length()
    for i in range(len(cfg)):
        r |= cfg[i] << (b*i)
    return r


def gen_wd_table(n):
    goal = [[0] * i + [n] + [0] * (n - 1 - i) for i in range(n)]
    goal[-1][-1] = n - 1
    goal = tuple(sum(goal, []))

    table = {}
    to_visit = [(goal, 0, n-1)]
    while to_visit:
        cfg, cost, e = to_visit.pop(0)
        enccfg = encode_cfg(cfg, n)
        if enccfg in table: continue
        table[enccfg] = cost

        for d in [-1, 1]:
            if 0 <= e + d < n:
                for c in range(n):
                    if cfg[n*(e+d) + c] > 0:
                        ncfg = list(cfg)
                        ncfg[n*(e+d) + c] -= 1
                        ncfg[n*e + c] += 1
                        to_visit.append((tuple(ncfg), cost + 1, e+d))

    return table

def slide_wd(n, goal):
    wd = gen_wd_table(n)
    goals = {i : goal.index(i) for i in goal}
    b = n.bit_length()

    def h(p):
        ht = 0 # Walking distance between rows.
        vt = 0 # Walking distance between columns.
        d = 0
        for i, c in enumerate(p):
            if c == 0: continue
            g = goals[c]
            xi, yi = i % n, i // n
            xg, yg = g % n, g // n
            ht += 1 << (b*(n*yi+yg))
            vt += 1 << (b*(n*xi+xg))

            if yg == yi:
                for k in range(i + 1, i - i%n + n): # Until end of row.
                    if p[k] and goals[p[k]] // n == yi and goals[p[k]] < g:
                        d += 2

            if xg == xi:
                for k in range(i + n, n * n, n): # Until end of column.
                    if p[k] and goals[p[k]] % n == xi and goals[p[k]] < g:
                        d += 2

        d += wd[ht] + wd[vt]

        return d
    return h




if __name__ == "__main__":
    solved_state = slide_solved_state(4)
    neighbours = slide_neighbours(4)
    is_goal = lambda p: p == solved_state

    tests = [
        (5,1,7,3,9,2,11,4,13,6,15,8,0,10,14,12),
        (2,5,13,12,1,0,3,15,9,7,14,6,10,11,8,4),
        (5,2,4,8,10,0,3,14,13,6,11,12,1,15,9,7),
        (11,4,12,2,5,10,3,15,14,1,6,7,0,9,8,13),
        (5,8,7,11,1,6,12,2,9,0,13,10,14,3,4,15),
    ]

    slide_solver = IDAStar(slide_wd(4, solved_state), neighbours)

    for p in tests:
        path, moves, cost, num_eval = slide_solver.solve(p, is_goal, 80)
        slide_print(p)
        print(", ".join({-1: "Left", 1: "Right", -4: "Up", 4: "Down"}[move[1]] for move in moves))
        print(cost, num_eval)

Wäre es für Sie in Ordnung, wenn ich diese Lösung auf Rosetta Code posten und sicherstellen würde, dass klar ist, dass sie von Ihnen und diesem Beitrag stammt? Ich habe an einem Python-basierten 15-Puzzle-Löser für diese RC-Aufgabe gearbeitet: rosettacode.org/wiki/15_puzzle_solver, aber es war eine Herausforderung, meinen Code dazu zu bringen, einen Pfad der Länge 52 in angemessener Zeit zu lösen. Ihre Lösung läuft in wenigen Sekunden. Ich habe gerade darüber nachgedacht, meine eigene IDA * -Version zu erstellen, aber Ihre funktioniert bereits. Mein aktueller Löser basiert auf A *. Wir brauchen nur ein Python-Beispiel. Wie auch immer, lass es mich wissen, wenn es in Ordnung ist, dieses zu verwenden.
Bobby Durrett

@ BobbyDurrett Das ist mehr als in Ordnung. Es ist jedoch kein besonders klarer Code.
Orlp

Vielen Dank. Ich denke, ich werde weiter an meiner für meine eigene Ausbildung arbeiten und sie auch posten, wenn ich es gut genug hinbekomme. Ich dachte, ich könnte deine genauso gut da oben platzieren, also gibt es ein Python-Beispiel.
Bobby Durrett

4

JavaScript (ES6) summiert die Schritte 329 für alle 5 Testfälle in ~ 1 Minute

Bearbeiten gleiche Strategie, verschiedene Ziele, eine bessere Lösung. Langsamer ...

So löse ich es quasi von Hand: Zwischenziele verwenden Nach jedem Ziel werden die relativen Kacheln nicht mehr verschoben. Jedes Zwischenziel wird mit einer parametrischen BSF-Funktion erreicht. Die 2 Parameter sind die Schleifenbedingung L (Wiederholen bei Wahr) und die Auswahlbedingung S (Auswählen, welche Kachel verschoben werden kann). Die Schritte:

  1. Platz 1 oben / links
  2. Platz 2
  3. Platz 5
  4. Platz 3,4 - obere Reihe ok
  5. Platz 9,13 - linke Spalte ok
  6. Der ganze Rest

Randnotiz Ich überprüfe nicht die Position der Kacheln 14 und 15. Unlösbare Rätsel wie [11,4,12,2,,15,10,3,5,,14,1,6,7,,0,9,8,13]haben 14 und 15 getauscht.

F=b=>(
  s=[],
  [[_=>b[0]!=1, (o,p)=>b[o+p]]
  ,[_=>b[1]!=2, (o,p)=>(p=b[o+p])>1&&p]
  ,[_=>b[5]!=5, (o,p)=>(p=b[o+p])>2&&p]
  ,[_=>b[2]!=3|b[3]!=4, (o,p)=>(p=b[o+p])>2&&p!=5&&p]
  ,[_=>b[10]!=9|b[15]!=13, (o,p)=>(p=b[o+p])>5&&p]
  ,[_=>b[6]!=6|b[7]!=7|b[8]!=8|b[11]!=10|b[12]!=11|b[13]!=12|b[18]!=0, (o,p)=>(p=b[o+p])>5&&p!=9&&p!=13&&p]
  ].forEach(([L,S])=>{
    for(v={},v[b]=1,t=0,m=[];L();)
    {
      b.forEach((x,p)=>
        x=='0'&&[-1,5,1,-5].forEach((o,d)=>
          (x=S(o,p))&&(c=b.slice(0),c[p]=x,c[o+p]=0,v[k=''+c]?0:v[k]=m.push([c,s.concat(d)]))
        )
      );[b,s]=m[t++]
    }
  }),
  ,s.map((d,i)=>i+': '+'RULD'[d]).join('\n') // multi line output
  // ,s.map(d=>'RULD'[d]).join(' ') // single line output (easier to test)
)

Snippet zum Testen oder Spielen öffnen (nur Firefox)

Testsuite In der Firefox / FireBug-Konsole

T=~new Date
;[[5,1,7,3,,9,2,11,4,,13,6,15,8,,0,10,14,12]
,[2,5,13,12,,1,0,3,15,,9,7,14,6,,10,11,8,4]
,[5,2,4,8,,10,0,3,14,,13,6,11,12,,1,15,9,7]
,[11,4,12,2,,5,10,3,15,,14,1,6,7,,0,9,8,13]
,[5,8,7,11,,1,6,12,2,,9,0,13,10,,14,3,4,15]]
.forEach(t=>console.log(t+'',F(t)))
console.log('Time ms ',T-=~new Date)

Ausgabe

"5,1,7,3,,9,2,11,4,,13,6,15,8,,0,10,14,12" "D D D L U L D L U R R U U L D D L U U"
"2,5,13,12,,1,0,3,15,,9,7,14,6,,10,11,8,4" "D R U L U L L U R D L D R D L U R U L D R D L U R U L U R R R D L L U R D R U L L D L D R U U L D R U R D L U L D D R R U L U L D R U L"
"5,2,4,8,,10,0,3,14,,13,6,11,12,,1,15,9,7" "R U U L D D R U L D D R U U L L D D R U L D L U U R R D L U R R D L L U L D D R U U L D D R U U U R R D L L U R R D L L L U R D D L U R D R U U L L D R D L U U"
"11,4,12,2,,5,10,3,15,,14,1,6,7,,0,9,8,13" "D L D R U L D D R U L L D L U R R D L U R U R D L U R U L L D R D L L D R U U L D R D L U R U U L D R R U L D R R U L L D L D R U U L D R R D L L U U R D R U L L"
"5,8,7,11,,1,6,12,2,,9,0,13,10,,14,3,4,15" "D D R U L L L D R U R D L U U R R D L U L U R D D L U U L D D D R U U L D D R U U U R D R U L D D L U U R D R U L D L L D R U L U R D L D R R U L L U R D D L U U"
"Time ms " 62234

3

Ich fing an, an diesem Problem zu arbeiten und wollte bisher mit meinem Code einen Beitrag leisten. Wie von Gareth angegeben, ist das Problem mit dem 8-Kachelpuzzle vergleichbar, und daher basiert der Code auf der großartigen Lösung von Keith Randall und damit in Python. Diese Lösung kann alle 5 Testfälle mit einer Gesamtsumme von weniger als 400 Zügen lösen und auch andere Rätsel. Es enthält eine optimierte und eine Brute-Force-Lösung. Der Code ist mittlerweile etwas aufgebläht. Die Ausgabe wird mit "llururd" abgekürzt. Hoffe, es ist hilfreich. http://www.penschuck.org/joomla/tmp/15Tile.txt (Erklärung) http://www.penschuck.org/joomla/tmp/tile15.txt (Python-Code)

# Author: Heiko Penschuck
# www.penschuck.org
# (C) 2012

# import os;os.chdir('work')
# os.getcwd()

# def execfile(file, globals=globals(), locals=locals()):
#   with open(file, "r") as fh: exec(fh.read()+"\n", globals, locals)
# 
#
# execfile("tile15.py");
#
## run these
# solve_brute();
# solve();



# some boards to play with
board2=(15,14,7,3,13,10,2,9,11,12,4,6,5,0,1,8);
# best: 76(52)  
#    72(56) 
#   68(51)      uurddlurrulldrrdllluuruldrddlururulddruurdllldrurddlurdruuldrdluurdd

board3=(13, 8, 9, 4, 15, 11, 5, 3, 14, 6, 12, 7, 1, 10, 2, 0)
# best: 106(77) 
#best: 90(64)   ullldruuldrrdrlluurulldrrdldluruulddrulurrdrddlluuurdldrrulddrulldrurullldrdluurrrddllurdr

board4=(4, 8, 12, 1, 13, 7, 3, 11, 9, 15, 6, 14, 5, 2, 10, 0) ;# best  100(74)

board5=(15,2,3,4,5,6,7,8,9,10,11,12,13,1,14,0); # best 44(32)
board6=( 1, 2,  3,  4, 6, 11,  0, 12, 8, 14,  9, 13, 5, 10,  7, 15);

# testcases
board7=(5,1,7,3,9,2,11,4,13,6,15,8,0,10,14,12); #   15 (7)
board8=(2,5,13,12,1,0,3,15,9,7,14,6,10,11,8,4); #  124 (94)
board9=(5,2,4,8,10,0,3,14,13,6,11,12,1,15,9,7) ; #  72 (56)
board10=(11,4,12,2,5,10,3,15,14,1,6,7,0,9,8,13) ;# 71 (57)
board11=(5,8,7,11,1,6,12,2,9,0,13,10,14,3,4,15) ;# 99 (73)

board12=(1,2,3,4,5,6,7,8,9,10,11,12,13,0,14,15); #pretty simple board
board13=(4, 10, 5, 12, 11, 7, 15, 2, 13, 1, 14, 8, 6, 3, 9, 0)

board=board3 ; # used by solve()
bboard=list(board) ;# used by solve_brute()

# init 
clean=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0)
i=0;
solution={};
invsolution={};
E={board:0}


# derived from Keith Randall 8-tile solution
# a: a board, d: offset to move from i: index in board
def Y(a,d,i):
 b=list(a); # b is now an indexable board
 b[i],b[i+d]=b[i+d],0; # make a move (up down left right)
 b=tuple(b); # now back to searchable
 if b not in E:E[b]=a;# store new board in E

def Calc():
 ii=0;
 # memory error when x is 21
 for x in ' '*14:
  if ii>10:
   print(ii);
  ii+=1
  for a in E.copy():
   # for all boards, make possible moves (up,left,right,down) and store the new boards
   i=list(a).index(0)
   if i>3:Y(a,-4,i)
   if i%4:Y(a,-1,i)
   if i%4 <3:Y(a,1,i)
   if i<12:Y(a,4,i)

def weigh(a,goal):
    factor=[26,8,4,6, 8,8,4,4, 4,4,1,1, 3,2,1,0]
    weight=0;
    for element in a:
        i=list(a).index(element);
        ix,iy=divmod(i,4); # ist
        if element == 0:
            # special for gap
            weight=weight+ix;
            #weight+=(ix+iy)
            continue;
        i=list(a).index(element);
        ix,iy=divmod(i,4); # ist
        j=list(goal).index(element);
        sx,sy=divmod(j,4); # soll
        #k=list(a).index(0); # gap
        #kx,ky=divmod(k,4)
        # try solving from topleft to bottom right (because clean board has gap at bottomright)
        tmp= abs(sx-ix)*abs(sx-ix)*factor[j]+ abs(sy-iy)*abs(sy-iy)*factor[j]
        #tmp += ((sx!=ix )& (sy!=iy)) *(4-sx)*(4-sy)*4
        weight+=tmp
        #(10-sx-sy-sy)
        # 8*abs(sx-ix) + (16-j)*(sx!=ix)
        #print('%2d   %2d_%2d (%2d_%2d)=> %d'%(element,i,j,(sx-ix),(sy-iy),weight))
    return weight

# read numbers seperated by a whitespace
def readboard():
    global E,D,board,clean,i
    reset()
    g=[]
    for x in' '*4:g+=map(int,input().split())
    board=tuple(g)

# read 'a' till 'o'
def readasciiboard():
    global E,D,board,clean,i
    trans={"0":0,"a":1,"b":2,"c":3,"d":4,"e":5,"f":6,"g":7,"h":8,"i":9,"j":10,"k":11,"l":12,"m":13,"n":14,"o":15}
    reset()
    g=[]
    vec=tuple(input().split());
    for x in vec: g.append(trans[x])
    board=tuple(g)

def printasciiboard(a):
    trans={"0":0,"a":1,"b":2,"c":3,"d":4,"e":5,"f":6,"g":7,"h":8,"i":9,"j":10,"k":11,"l":12,"m":13,"n":14,"o":15}
    itrans={}
    for x in trans: itrans[trans[x]]=x
    g=[]
    for x in a: g.append(itrans[x])
    for i in(0,4,8,12): print('%s %s %s %s'%tuple(g[i:i+4]))

# find the board with the smallest weight
def minimum():
    global minn,E,clean
    minn=1111111;# start with a huge number
    qq=board
    for q in E:
        if weigh(q,clean) < minn: 
            minn=weigh(q,clean)
            qq=q
    return qq

# run this and printsolution()
# (you might have to reverse the order of the printed solution)
def solve():
    global start,board,E,clean,minn,solution
    start=board;
    solution={};
    E={ board:0 }
    for x in range(0,11):
        Calc(); # walks all possible moves starting from board to a depth of 10~20 moves
        if clean in E:
            print('Solution found')
            q=clean;
            tmp=[];
            while q:
                tmp.append(q)
                q=E[q]
            for x in reversed(tmp):
                solution[len(solution)]=x;
            printsolution();
            return
        q=minimum();  # calculates the "weight" for all Calc()-ed boards and returns the minimum
        #print("Len %3d"%len(E))
        print("weight %d"%minn)
#       stitch solution
        newboard=q;
        tmp=[];
        while q:
            tmp.append(q)
            q=E[q]
        for x in reversed(tmp):
            solution[len(solution)]=x;
        board=newboard;
        E={board:0}; #reset the Calc()-ed boards
    print("No Solution")


# collects and prints the moves of the solution
# from clean board to given board
# (you have to reverse the order)
def printsolution():
    global invsolution,solution,moves,clean,start
    moves=""
    g=start; # start from board to clean
    y=g
    #invsolution[clean]=0;
    for x in solution:
        # uncomment this if you want to see each board of the solution
        #print(g);
        g=solution[x];
        #sys.stdout.write(transition(y,g))
        if (transition(g,y)=="E"): continue
        moves+=transition(g,y)
        # or as squares
        #print('%10s %d %s'%("step",len(moves),transition(g,y)));
        #print(" %s -- %s "%(y,g))
        #for i in(0,4,8,12): print('%2d %2d %2d %2d'%g[i:i+4])
        y=g         
    llen=len(moves)
    print(" moves%3d "%llen)
    print(moves)
    # processing moves. funny, but occysionally ud,du,lr or rl appears due to the stitching
    while 'lr' in moves:
        a,b,c=moves.partition('lr')
        moves=a+c
        llen-=2
    while 'rl' in moves:
        a,b,c=moves.partition('rl')
        moves=a+c
        llen-=2
    while 'ud' in moves:
        a,b,c=moves.partition('ud')
        moves=a+c
        llen-=2
    while 'du' in moves:
        a,b,c=moves.partition('du')
        moves=a+c
        llen-=2
    # processing moves. concatenating lll to 3l
    while 'lll' in moves:
        a,b,c=moves.partition('lll')
        moves=a+' 3l '+c
        llen-=2
    while 'rrr' in moves:
        a,b,c=moves.partition('rrr')
        moves=a+' 3r '+c
        llen-=2
    while 'uuu' in moves:
        a,b,c=moves.partition('uuu')
        moves=a+' 3u '+c
        llen-=2
    while 'ddd' in moves:
        a,b,c=moves.partition('ddd')
        moves=a+' 3d '+c
        llen-=2

    while 'll' in moves:
        a,b,c=moves.partition('ll')
        moves=a+' 2l '+c
        llen-=1
    while 'rr' in moves:
        a,b,c=moves.partition('rr')
        moves=a+' 2r '+c
        llen-=1
    while 'uu' in moves:
        a,b,c=moves.partition('uu')
        moves=a+' 2u '+c
        llen-=1
    while 'dd' in moves:
        a,b,c=moves.partition('dd')
        moves=a+' 2d '+c
        llen-=1
    print(" processed:%3d "%llen)
    print(moves)

    return

def transition(a,b):
    # calculate the move (ie up,down,left,right)
    # between 2 boards (distance of 1 move and a weight of 1 only)
    i=list(a).index(0);
    j=list(b).index(0);
    if (j==i+1): return "l"
    if (j==i-1): return "r"
    if (j==i-4): return "d"
    if (j==i+4): return "u"
    #print("transition not possible")
    return "E"


###################################################

# below this line are functions for the brute force solution only
# added for comparision
#
# its using a global variable bboard and works destructively on it

def solve_brute():
    global bboard,board;
    bboard=list(board); # working copy
    move(1,0);move(2,1);
    move(3,14); # <== additional move, move 3 out of way
    move(4,2);move(3,6);
    gap_down();gap_down();gap_right();gap_right();gap_up();gap_up();gap_up();gap_left();gap_down();
    #first line solved
    print("first line");printbboard();
    move(5,4);move(6,5);move(7,14);move(8,6);move(7,10);
    gap_down();gap_down();gap_right();gap_right();gap_up();gap_up();gap_left();gap_down();
    #second line solved (upper half)
    print("2nd line");printbboard();
    move(9,15);move(13,8);move(9,9)
    gap_down();gap_left();gap_left();gap_up();gap_right();
    print("left border");printbboard();
    #left border solved
    move(10,15);move(14,9);move(10,10);
    gap_down();movegap(1+3*4);gap_up();gap_right();
    print("left half");printbboard();
    #left half solved

    #rotating last 4 tiles 5 times
    for x in ' '*5:
        gap_right();gap_down(); # gap is now on 15
        if (bboard==[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0]):
            print("solution found");printbboard();          
            return;
        gap_left();gap_up();
    print("No solution found");
    printbboard();
    return

def printbboard():
    global bboard
    for i in(0,4,8,12): print('%2d %2d %2d %2d'%tuple(bboard[i:i+4]))

def gap_up():
    global bboard
    i=bboard.index(0);
    if (i<4):
        print("Err up()")
        return
    bboard[i],bboard[i-4] = bboard[i-4] , 0 ;

def gap_down():
    global bboard
    i=bboard.index(0);
    if (i>11):
        print("Err down()")
        return
    bboard[i],bboard[i+4] = bboard[i+4] , 0 ;

def gap_left():
    global bboard
    i=bboard.index(0);
    if (i%4<1):
        print("Err left()")
        return  
    bboard[i],bboard[i-1]= bboard[i-1] , 0 ;

def gap_right():
    global bboard
    i=bboard.index(0);
    if (i%4>2):
        print("Err right()")
        return
    bboard[i],bboard[i+1] = bboard[i+1] , 0 ;

def movegap(d): 
    global bboard;
    # d: destination location (0-15)
    k=bboard.index(0);
    ky,kx=divmod(k,4);
    dy,dx=divmod(d,4);
    # moving the gap
    while (ky>dy): 
        gap_up();ky-=1;
    while (ky<dy):
        gap_down();ky+=1;
    while (kx>dx):
        gap_left();kx-=1;
    while (kx<dx):
        gap_right();kx+=1;

def move(s,d):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    dy,dx=divmod(d,4);
    #moving a number
    while (ix<dx):
        move1right(s);
        print("1right ");
        ix+=1;
    while (ix>dx):
        move1left(s);
        ix-=1;
        print("1left ");
    while(iy<dy):
        move1down(s);
        print("1down ");
        iy+=1;
    while(iy>dy):
        move1up(s);
        print("1up");
        iy-=1;

def move1up(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        # above: move 1 above, then leftorright, then 1 down
        movegap(kx+4*(iy-1))
        movegap(ix+4*(iy-1))
        movegap(ix+4*iy)
        return; # fin
    if (ky==iy):
        # if equal, then first try 1 down
        # (not nescessary if gap is right of s)
        if (kx<ix):
            if (ky<=2):
                movegap(kx+4*(iy+1))
                movegap(ix+1+4*(iy+1)); # 1right 1down of s
                movegap(ix+1+4*(iy-1)); # 1right 1up of s
                movegap(ix+4*(iy-1));# right over s
                gap_down(); # fin
                return;
            # bottom border, must go up first
            movegap(kx+4*(iy-1));
            movegap(ix+4*(iy-1));
            gap_down();
            return; # fin
        else:
            movegap(ix+1+4*iy); # move 1 right of s
            gap_up()
            gap_left()
            gap_down();
            return; # fin
    movegap(ix+1+4*ky); # move 1 right of s
    movegap(ix+1+4*(iy+1)); # move 1 right and 1 down of s
    gap_up();
    gap_up();
    gap_left();
    gap_down();

def move1left(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        # if above gap move 1 over s
        if (kx<ix):
            movegap(kx+4*iy);
            movegap(ix+4*iy);
            return;# fin
        if (kx==ix):
            #gap over s
            if (ix<3):
                # try to move under s and then left
                if (iy<3):
                    movegap(ix+1+4*ky)
                    movegap(ix+1+4*(iy+1))
                    movegap(ix-1+4*(iy+1))
                    movegap(ix-1+4*iy)
                    movegap(ix+4*iy)
                    return; #fin
            # have to move left         
            movegap(kx-1+4*ky)  
            movegap(ix-1+4*iy)
            movegap(ix+4*iy)
            return;# fin
        # move 1 right of s
        if (iy==3):
            # cant go under, have to go left over
            movegap(kx+4*(iy-1))
            movegap(ix-1+4*(iy-1))
            movegap(ix-1+4*iy)
            movegap(ix+4*iy);
            return; #fin
        movegap(ix+1+4*(iy-1))
        gap_down();gap_down();gap_left();gap_left();gap_up();gap_right();
        return; #fin
    if (ky==iy):
        if (kx<ix):
            movegap(ix-1+4*iy)
            gap_right();
            return; # fin
        if (ky<3):
            gap_down();
            ky+=1;
        else:
            #have to move up
            movegap(ix+4*(iy-1))
            movegap(ix-1+4*(iy-1))
            movegap(ix-1+4*iy)
            gap_right();
            return; #fin
    # gap below s
    movegap(ix+4*(iy+1));
    gap_left();gap_up();gap_right();


def move1right(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        if (kx==ix):
            movegap(kx+1+4*ky)
            movegap(kx+1+4*iy)
            movegap(ix+4*iy);
            return; #fin
        movegap(kx+4*iy)
        if (kx>ix):
            movegap(ix+4*iy);
            return; #fin
        movegap(kx+4*(iy+1))
        movegap(ix+1+4*(iy+1))
        movegap(ix+1+4*iy);
        movegap(ix+4*iy);
        return; #fin
    if (ky==iy):
        if (kx<ix):
            if (ky>2):
                # bottom row, left of s, have to move 1 up
                gap_up()
                # move 1 right 1 up of s
                movegap(ix+1+4*(ky-1));
                gap_down()
                gap_left()
                return; # fin
            # first 1 down
            movegap(kx+4*(ky+1))
            # to the right of s
            movegap(ix+1+4*(ky+1))
            gap_up()
            gap_left()
            return; # fin
        # already 1 right of s
        movegap(ix+4*iy);
        return; #fin
    # move gap 1 right and 1 down of s
    movegap(kx+4*(iy+1))
    movegap(ix+1+4*(iy+1))
    gap_up();
    gap_left();

def move1down(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        # gap is over s, move it below
        if (kx==ix):
            if (ix>2):
                # right border, have to move 1 to the left
                movegap(kx+4*(iy-1))
                movegap(kx-1+4*(iy-1))
                movegap(kx-1+4*(iy+1))
                gap_up();
                return; #fin
            # move right of s
            movegap(kx+4*(iy-1))
            movegap(kx+1+4*(iy-1))
            movegap(kx+1+4*(iy+1))
            movegap(kx+4*(iy+1))
            gap_up(); #fin
        movegap(kx+4*(iy+1))
        movegap(ix+4*(iy+1))
        gap_up(); #fin
    if (ky==iy):
        gap_down();
        ky+=1;
    # gap is below s, move 1 under s
    movegap(ix+4*(iy+1))
    gap_up();
    #fin
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.